zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method. (English) Zbl 1252.65194
Summary: A Legendre-Galerkin method for solving second-order elliptic differential equations subject to the most general nonhomogeneous Robin boundary conditions is presented. The homogeneous Robin boundary conditions are satisfied exactly by expanding the unknown variable using a polynomial basis of functions which are built upon the Legendre polynomials. The direct solution algorithm here developed for the homogeneous Robin problem in two-dimensions relies upon a tensor product process. Nonhomogeneous Robin data are taken into account by means of a lifting. Such a lifting is performed in two successive steps, the first one to account for the data specified at the corners and the second one to account for the boundary values prescribed in the interior of the sides. Numerical results indicating the high accuracy and effectiveness of these algorithms are presented.
MSC:
65N35Spectral, collocation and related methods (BVP of PDE)
References:
[1]Livermore, P. W.: Galerkin orthogonal polynomials, J. comput. Phys. 229, 2046-2060 (2010) · Zbl 1185.65138 · doi:10.1016/j.jcp.2009.11.022
[2]Bernardi, C.; Maday, Y.: Approximations spectrales des probl’emes aux limites elliptiques, (1992) · Zbl 0773.47032
[3]Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods in fluid mechanics, (1988)
[4]C.I. Gheorghiu, Spectral Methods for Differential Problems, T. Popoviciu, Institute of Numerical Analysis, Cluj-Napoca, Romaina, 2007.
[5]Voigt, R. G.; Gottlieb, D.; Hussaini, M. Y.: Spectral methods for partial differential equations, (1984)
[6]Boyd, J. P.: Chebyshev and Fourier spectral methods, (2001) · Zbl 0994.65128
[7]Doha, E. H.; Bhrawy, A. H.: Efficient spectral-Galerkin algorithms for direct solution of second-order differential equations using Jacobi polynomials, Numer. algorithms 42, 137-164 (2006) · Zbl 1103.65119 · doi:10.1007/s11075-006-9034-6
[8]Doha, E. H.; Bhrawy, A. H.: Efficient spectral-Galerkin algorithms for direct solution of fourth-order differential equations using Jacobi polynomials, Appl. numer. Math. 58, 1224-1244 (2008) · Zbl 1152.65112 · doi:10.1016/j.apnum.2007.07.001
[9]Doha, E. H.; Bhrawy, A. H.; Hafez, R. M.: A Jacobi–Jacobi dual-Petrov–Galerkin method for third- and fifth-order differential equations, Math. comput. Modelling 53, 1820-1832 (2011) · Zbl 1219.65077 · doi:10.1016/j.mcm.2011.01.002
[10]Eslahchi, M. R.; Dehghan, Mehdi: Application of Taylor series in obtaining the orthogonal operational matrix, Comput. math. Appl. 61, 2596-2604 (2011) · Zbl 1221.33016 · doi:10.1016/j.camwa.2011.03.004
[11]Dehghan, Mehdi; Masjed-Jamei, M.; Eslahchi, M. R.: On numerical improvement of the second kind of Gauss–Chebyshev quadrature rules, Appl. math. Comput. 168, 431-446 (2005) · Zbl 1082.65029 · doi:10.1016/j.amc.2004.09.047
[12]Bhrawy, A. H.; Alofi, A. S.; Ezz-Eldien, S. S.: A quadrature tau method for fractional differential equations with variable coefficients, Appl. math. Lett. 24, 2146-2152 (2011)
[13]El-Daou, M. K.: Exponentially weighted Legendre–Gauss tau methods for linear second-order differential equations, Comput. math. Appl. 62, 51-64 (2011) · Zbl 1228.65108 · doi:10.1016/j.camwa.2011.04.045
[14]Saadatmandi, A.; Dehghan, Mehdi: A tau approach for solution of the space fractional diffusion equation, Comput. math. Appl. 62, 1135-1142 (2011) · Zbl 1228.65203 · doi:10.1016/j.camwa.2011.04.014
[15]Bialecki, B.; Fairweather, G.; Karageorghis, A.: Matrix decomposition algorithms for elliptic boundary value problems: a survey, Numer. algorithms 56 (2011) · Zbl 1208.65036 · doi:10.1007/s11075-010-9384-y
[16]Auteri, F.; Parolini, N.; Quartapelle, L.: Essential imposition of Neumann Galerkin–Legendre elliptic solvers, J. comput. Phys. 185, 427-444 (2003) · Zbl 1017.65093 · doi:10.1016/S0021-9991(02)00064-5
[17]Livermore, P. W.; Ierley, G. R.: Quasi-lp norm orthogonal Galerkin expansions in sums of Jacobi polynomials, Numer. algorithms 54, 533-569 (2010) · Zbl 1197.65027 · doi:10.1007/s11075-009-9353-5
[18]J. Shen, Efficient Chebyshev Legendre Galerkin methods for elliptic problems, in: A.V. Ilin and R. Scott (Eds.), Proc. ICOSAHOM’95, Houston J. Math., 1996, pp. 233–240.
[19]Doha, E. H.; Bhrawy, A. H.; Abd-Elhameed, W. M.: Jacobi spectral Galerkin method for elliptic Neumann problems, Numer. algorithms 50, 67-91 (2009) · Zbl 1169.65111 · doi:10.1007/s11075-008-9216-5
[20]Doha, E. H.; Abd-Elhameed, W. M.: Accurate spectral solutions for the parabolic and elliptic partial differential equations by the ultraspherical tau method, J. comput. Appl. math. 181, 24-45 (2005) · Zbl 1071.65136 · doi:10.1016/j.cam.2004.11.015
[21]Haidvogel, D. B.; Zang, T. A.: The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. comput. Phys. 30, 167-180 (1979) · Zbl 0397.65077 · doi:10.1016/0021-9991(79)90097-4
[22]Auteri, F.; Quartapelle, L.: Galerkin spectral method for the vorticity and stream function equations, J. comput. Phys. 149, 306-332 (1999) · Zbl 0934.76065 · doi:10.1006/jcph.1998.6155
[23]Grisvard, P.: Elliptic problems in nonsmooth domains, (1985) · Zbl 0695.35060
[24]Bialecki, B.; Karageorghis, A.: Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle, Numer. algorithms 36, 203-227 (2004) · Zbl 1075.65139 · doi:10.1023/B:NUMA.0000040056.52424.49
[25]Graham, A.: Kronecker products and matrix calculus: with applications, (1981)