zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A convenient technique for solving linear and nonlinear Abel integral equations by the Adomian decomposition method. (English) Zbl 1252.65207
Summary: Linear and nonlinear Abel integral equations are transformed in such a manner that the Adomian decomposition method can be applied. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained indicate that this approach is indeed practical and efficient.
MSC:
65R20Integral equations (numerical methods)
45A05Linear integral equations
45E10Integral equations of the convolution type
45G05Singular nonlinear integral equations
References:
[1]Wazwaz, A.: A first course in integral equations, (1997) · Zbl 0924.45001
[2]Wazwaz, A.: A reliable modification of Adomian decomposition method, Appl. math. Comput. 102, 77-86 (1999) · Zbl 0928.65083 · doi:10.1016/S0096-3003(98)10024-3
[3]Polyanin, A. D.; Manzhirov, A. V.: Handbook of integral equations, (1998)
[4]Cherruault, Y.; Seng, V.: The resolution of non-linear integral equations of the first kind using the decomposition method, Kybernetes 26, No. 2, 198-206 (1997) · Zbl 0932.65142 · doi:10.1108/03684929710163100
[5]Adomian, G.: Nonlinear stochastic operator equations, (1986)
[6]Adomian, G.: Solving frontier problems of physics: the decomposition method, (1994)
[7]Adomian, G.: Nonlinear stochastic systems theory and applications to physics, (1994)
[8]Liu, Ya-Ping; Tao, Lu: Mechanical quadrature methods and their extrapolation for solving first kind Abel integral equations, J. comput. Appl. math. 201, 300 313 (2007) · Zbl 1113.65123 · doi:10.1016/j.cam.2006.02.021
[9]Liu, Ya-Ping; Tao, Lu: High accuracy combination algorithm and a posteriori error estimation for solving the first kind Abel integral equations, Appl. math. Comput. 178, 441451 (2006) · Zbl 1104.65127 · doi:10.1016/j.amc.2005.11.066
[10]Gladwin, C. J.; Garey, L. E.: Multi-step methods for first kind singular Volterra integral equations, J. integ. Equat. appl. 3, No. 4 (1991) · Zbl 0757.65141 · doi:10.1216/jiea/1181075647
[11]M. Krasnov, A. Kisselev, G. Makarenko,Équations Intégrales, EDITIONS MIR. MOSCOU, 1977.