zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach spaces. (English) Zbl 1252.93028
Summary: In this paper, we establish two sufficient conditions for nonlocal controllability for fractional evolution systems. Since there is no compactness of characteristic solution operators, our theorems guarantee the effectiveness of controllability results under some weakly compactness conditions.
MSC:
93B05Controllability
34A08Fractional differential equations
93C15Control systems governed by ODE
References:
[1]Byszewski, L.: Theorems about existence and uniqueness of solutions of a semi-linear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162, 494–505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[2]Fan, Z., Li, G.: Existence results for semilinear differential equations with nonlocal and impulsive conditions. J. Funct. Anal. 258, 1709–1727 (2010) · Zbl 1193.35099 · doi:10.1016/j.jfa.2009.10.023
[3]Hernández, E., Santos, J.S., Azevedo, K.A.G.: Existence of solutions for a class of abstract differential equations with nonlocal conditions. Nonlinear Anal. 74, 2624–2634 (2011) · Zbl 1221.47079 · doi:10.1016/j.na.2010.12.018
[4]Wang, J., Wei, W.: A class of nonlocal impulsive problems for integrodifferential equations in Banach spaces. Results Math. 58, 379–397 (2010) · Zbl 1209.34095 · doi:10.1007/s00025-010-0057-x
[5]Hernández, E., O’Regan, D.: Controllability of Volterra–Fredholm type systems in Banach space. J. Franklin Inst. 346, 95–101 (2009) · Zbl 1160.93005 · doi:10.1016/j.jfranklin.2008.08.001
[6]Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
[7]Wang, J., Zhou, Y.: A class of fractional evolution equations and optimal controls. Nonlinear Anal. 12, 262–272 (2011) · Zbl 1214.34010 · doi:10.1016/j.nonrwa.2010.06.013
[8]Wang, J., Zhou, Y., Medved’, M.: On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay. J. Optim. Theory Appl. 152, 31–50 (2012) · Zbl 06028533 · doi:10.1007/s10957-011-9892-5
[9]Balachandran, K., Park, J.Y.: Controllability of fractional integrodifferential systems in Banach spaces. Nonlinear Anal. 3, 363–367 (2009)
[10]Sakthivel, R., Ren, Y., Mahmudov, N.I.: On the approximate controllability of semilinear fractional differential systems. Comput. Math. Appl. 62, 1451–1459 (2011) · Zbl 1228.34093 · doi:10.1016/j.camwa.2011.04.040
[11]Debbouchea, A., Baleanu, D.: Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 62, 1442–1450 (2011) · Zbl 1228.45013 · doi:10.1016/j.camwa.2011.03.075
[12]Hernández, E., O’Regan, D., Balachandran, K.: On recent developments in the theory of abstract differential equations with fractional derivatives. Nonlinear Anal. 73, 3462–3471 (2010) · Zbl 1229.34004 · doi:10.1016/j.na.2010.07.035
[13]Jaradat, O.K., Al-Omari, A., Momani, S.: Existence of the mild solution for fractional semilinear initial value problems. Nonlinear Anal. 69, 3153–3159 (2008) · Zbl 1160.34300 · doi:10.1016/j.na.2007.09.008
[14]Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Lecture Notes in Pure and Appl. Math., vol. 60. Marcel Dekker, New York (1980)
[15]Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Ser. Nonlinear Anal. Appl., vol. 7. de Gruyter, Berlin (2001)
[16]Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59, 1063–1077 (2010) · Zbl 1189.34154 · doi:10.1016/j.camwa.2009.06.026
[17]O’Regan, D., Precup, R.: Existence criteria for integral equations in Banach spaces. J. Inequal. Appl. 6, 77–97 (2001)
[18]Mönch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear Anal. 4, 985–999 (1980) · Zbl 0462.34041 · doi:10.1016/0362-546X(80)90010-3