zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust finite-time stabilization of uncertain singular Markovian jump systems. (English) Zbl 1252.93130
Summary: This paper focuses on the problem of robust finite-time stabilization for one family of uncertain singular Markovian jump systems. Firstly, the definitions of singular stochastic finite-time boundedness and singular stochastic H finite-time boundedness are presented. Secondly, sufficient conditions on singular stochastic finite-time boundedness are obtained for the class of singular stochastic systems with parametric uncertainties and time-varying norm-bounded disturbance. Then the results are extended to singular stochastic H finite-time boundedness for the family of singular stochastic systems. Sufficient criteria are provided to guarantee that the underlying closed-loop singular stochastic system is singular stochastic finite-time boundedness and singular stochastic H finite-time boundedness, which can be reduced to a feasibility problem in the form of linear matrix inequalities with a fixed parameter, respectively. Finally, numerical examples are given to illustrate the validity of the proposed methodology.
93E15Stochastic stability
93B36H -control
60H10Stochastic ordinary differential equations
60J27Continuous-time Markov processes on discrete state spaces
93D15Stabilization of systems by feedback
[1]Kushner, H. J.: Finite-time stochastic stability and the analysis of tracking systems, IEEE trans. Automat. control 11, 219-227 (1966)
[2]Weiss, L.; Infante, E. F.: Finite time stability under perturbing forces and on product spaces, IEEE trans. Automat. control 12, 54-59 (1967)
[3]Amato, F.; Ariola, M.; Dorato, P.: Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica 37, 1459-1463 (2001) · Zbl 0983.93060 · doi:10.1016/S0005-1098(01)00087-5
[4]Zhang, W.; An, X.: Finite-time control of linear stochastic systems, Int. J. Innovative comput. Inform. control 4, No. 3, 689-696 (2008)
[5]He, S.; Liu, F.: Robust finite-time stabilization of uncertain fuzzy jump systems, Int J. Innovative comput. Inform. control 6, No. 9, 3853-3862 (2010)
[6]Amato, F.; Ariola, M.; Dorato, P.: Finite-time stabilzation via dynamic output feedback, Automatica 42, 337-342 (2006) · Zbl 1099.93042 · doi:10.1016/j.automatica.2005.09.007
[7]Xin, D.; Liu, Y.: Finite-time stability analysis and control design of nonlinear systems, J. shandong univ. 37, 24-30 (2007)
[8]Y. Zhang, C. Liu, X. Mu, Finite-time control of delayed systems subject to exogenous disturbance, in: 2009 International Workshop on Intelligent Systems and Applications, ISA 2009, 2009, pp. 2147 – 2149.
[9]Garcia, G.; Tarbouriech, S.; Bernussou, J.: Finite-time stabilization of linear time-varying continuous systems, IEEE trans. Automat. control 54, 364-369 (2009)
[10]Ambrosino, R.; Calabrese, F.; Cosentino, C.; De, T. G.: Sufficient conditions for finite-time stability of impulsive dynamical systems, IEEE trans. Automat. control 54, 861-865 (2009)
[11]Amato, F.; Ambrosino, R.; Ariola, M.; Cosentino, C.: Finite-time stability of linear time-varying systems with jumps, Automatica 45, 1354-1358 (2009) · Zbl 1162.93375 · doi:10.1016/j.automatica.2008.12.016
[12]Li, S.; Wang, Z.; Fei, S.: Finite-time control of a bioreactor system using terminal sliding mode, Int. J. Innovative comput. Inform. control 5, No. 10B, 3495-3504 (2009)
[13]Amato, F.; Ariola, M.; Cosentino, C.: Finite-time control of discrete-time linear systems: analysis and design conditions, Automatica 46, 919-924 (2010) · Zbl 1191.93099 · doi:10.1016/j.automatica.2010.02.008
[14]Meng, Q.; Shen, Y.: Finite-time H control for linear continuous system with norm-bounded disturbance, Commun. nonlinear sci. Numer. simulat. 14, 1043-1049 (2009) · Zbl 1221.93066 · doi:10.1016/j.cnsns.2008.03.010
[15]He, S.; Liu, F.: Stochastic finite-time boundedness of Markovian jumping neural network with uncertain transition probabilities, Appl. math. Modell. 35, 2631-2638 (2011) · Zbl 1219.93143 · doi:10.1016/j.apm.2010.11.050
[16]Lewis, F. L.; Systems, A. Survey Of Linear Singular: Circuits, Syst. signal process. 22, 3-36 (1986) · Zbl 0613.93029 · doi:10.1007/BF01600184
[17]Dai, L.: Lectures notes in control and information sciences, Singular control systems 118 (1989)
[18]Ishihara, J. Y.; Terra, M. H.: On the Lyapunov theorem for singular systems, IEEE trans. Automat. control 47, 1926-1930 (2002)
[19]Mahmoud, M.; Al-Sunni, F.; Shi, Y.: Dissipativity results for linear singular time-delay systems, Int. J. Innovative comput. Inform. control 4, No. 11, 2833-2846 (2008)
[20]Wu, Z.; Park, J. H.; Su, H.; Chu, J.: Dissipativity analysis for singular systems with time-varying delays, Appl. math. Comput. 218, No. 8, 4605-4613 (2011)
[21]Masubuchi, I.; Kamime, Y.; Ohara, A.; Suda, N.: H control for descriptor systems: a matrix inequalities approach, Automatica 3, No. 4, 669-673 (1997) · Zbl 0881.93024 · doi:10.1016/S0005-1098(96)00193-8
[22]Xia, Y.; Shi, P.; Liu, G.; Rees, D.: Robust mixed H/H2 state-feedback control for continuous-time descriptor systems with parameter uncertainties, Syst. signal process. 24, No. 4, 431-443 (2005) · Zbl 1136.93338 · doi:10.1007/s00034-004-0917-2
[23]Zhang, L.; Huang, B.; Lam, J.: LMI synthesis of H2 and mixed H2/H controllers for singular systems, IEEE trans. Circuits syst. 50, No. 9, 615-626 (2003)
[24]Krasovskii, N. N.; Lidskii, E. A.: Analytical design of controllers in systems with random attributes, Automat. rem. Control 22, 1021-1025 (1961) · Zbl 0104.36704
[25]Boukas, E. K.: Communications and control engineering, Control of singular systems with random abrupt changes (2008)
[26]Mao, X.: Stability of stochastic differential equations with Markovian switching, Stoch. process. Appl. 79, 45-67 (1999) · Zbl 0962.60043 · doi:10.1016/S0304-4149(98)00070-2
[27]Souza, C. E.: Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems, IEEE trans. Automat. control 51, No. 5, 836-841 (2006)
[28]X. Li, R. Rakkiyappan, Delay-dependent global asymptotic stability criteria for stochastic genetic regulatory networks with Markovian jumping parameters, Appl. Math. Modell., doi:10.1016/j.apm.2011.09.017, in press.
[29]Shi, P.; Xia, Y.; Liu, G.; Rees, D.: On designing of sliding mode control for stochastic jump systems, IEEE trans. Automat. control 51, No. 1, 97-103 (2006)
[30]Wu, L.; Shi, P.; Gao, H.: State estimation and sliding mode control of Markovian jump singular systems, IEEE trans. Automat. control 55, No. 5, 1213-1219 (2010)
[31]Wang, Z.; Huang, L.; Yang, X.: H performance for a class of uncertain stochastic nonlinear Markovian jump systems with time-varying delay via adaptive control method, Appl. math. Modell. 35, 1983-1993 (2011) · Zbl 1217.93159 · doi:10.1016/j.apm.2010.11.010
[32]Xu, S.; Chen, T.; Lam, J.: Robust H filtering for uncertain Markovian jump systems with mode-dependent time delays, IEEE trans. Automat. control 48, No. 5, 900-907 (2003)
[33]Mahmoud, M. S.; Shi, P.; Ismail, A.: Robust Kalman filtering for discrete-time Markovian jump systems with parameter uncertainty, J. comput. Appl. math. 169, 53-69 (2004) · Zbl 1067.93059 · doi:10.1016/j.cam.2003.11.002
[34]Ma, S.; Boukas, E. K.: Robust H fltering for uncertain discrete Markov jump singular systems with mode-dependent time delay, IET control theory appl. 3, 351-361 (2009)
[35]Boukas, E. K.; Shi, P.: Stochastic stability and guaranteed cost control of discrete-time uncertain systems with Markovian jumping parameters, Int. J. Robust nonlinear control 8, 1155-1167 (1998) · Zbl 0918.93060 · doi:10.1002/(SICI)1099-1239(1998110)8:13<1155::AID-RNC380>3.0.CO;2-F
[36]Qiu, J.; Lu, K.: New robust passive stability criteria for uncertain singularly Markov jump systems with time delays, ICIC express lett. 3, 651-656 (2009)
[37]Yin, Y.; Shi, P.; Liu, F.: Gain scheduled PI tracking control on stochastic nonlinear systems with partially known transition probabilities, J. franklin inst. 348, No. 4, 685-702 (2011) · Zbl 1227.93127 · doi:10.1016/j.jfranklin.2011.01.011
[38]Mao, W.: An LMI approach to D-stability and D-stabilization of linear discrete singular systems with state delay, Appl. math. Comput. 218, No. 5, 1694-1704 (2011)
[39]Xu, S.; Lam, J.: Roubst control filtering of singular systems, (2006)
[40]S. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear matrix inequality in systems and control theory, in: SIAM studies in Applied Mathematics, SIAM, Philadelphia, 1994.