zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Iterated differentiation followed by composition from Bloch-type spaces to weighted BMOA spaces. (English) Zbl 1253.30085

Summary: Let φ be a holomorphic self-map of the open unit disk 𝔻 and H(𝔻) the class of holomorphic functions on 𝔻. For n 0 define an operator by:

C φ D n f=f (n) φ,fH(𝔻)·

We characterize the boundedness and compactness of the operator C φ D n from Bloch-type spaces to weighted BMOA spaces.

MSC:
30H30Bloch spaces
30H35BMO-spaces
References:
[1]Hibschwailer, R. A.; Portnoy, N.: Composition followed by differentiation between Bergman and Hardy spaces, Rocky mountain J. Math. 35, No. 3, 843-855 (2005) · Zbl 1079.47031 · doi:10.1216/rmjm/1181069709
[2]Krantz, S.; Stević, S.: On the iterated logarithmic Bloch space on the unit ball, Nonlinear anal. TMA 71, 1772-1795 (2009) · Zbl 1221.47056 · doi:10.1016/j.na.2009.01.013
[3]Li, S.; Stević, S.: Composition followed by differentiation between Bloch type spaces, J. comput. Anal. appl. 9, No. 2, 195-206 (2007) · Zbl 1132.47026
[4]Li, S.; Stević, S.: Composition followed by differentiation from mixed norm spaces to α-Bloch spaces, Sb. math. 199, No. 12, 1847-1857 (2008) · Zbl 1169.47025 · doi:10.1070/SM2008v199n12ABEH003983
[5]Li, S.; Stević, S.: Generalized composition operators on Zygmund spaces and Bloch type spaces, J. math. Anal. appl. 338, 1282-1295 (2008) · Zbl 1135.47021 · doi:10.1016/j.jmaa.2007.06.013
[6]Li, S.; Stević, S.: Composition followed by differentiation between H and α-Bloch spaces, Houston J. Math. 35, No. 1, 327-340 (2009) · Zbl 1166.47034
[7]Li, S.; Stević, S.: On an integral-type operator from iterated logarithmic Bloch spaces into Bloch-type spaces, Appl. math. Comput. 215, 3106-3115 (2009) · Zbl 1181.30032 · doi:10.1016/j.amc.2009.10.004
[8]Li, S.; Stević, S.: Products of integral-type operators and composition operators between Bloch-type spaces, J. math. Anal. appl. 349, 596-610 (2009) · Zbl 1155.47036 · doi:10.1016/j.jmaa.2008.09.014
[9]Z. Lou, Bloch type spaces of analytic functions, PhD Thesis 1997.
[10]Maccluer, B.; Zhao, R.: Vanishing logarithmic Carleson measure, Illinois J. Math. 46, 507-518 (2002) · Zbl 1020.30038 · doi:http://www.math.uiuc.edu/~hildebr/ijm/summer02/final/maccluer.html
[11]Ohno, S.: Products of differentiation and composition on Bloch spaces, Bull. korean math. Soc. 46, No. 6, 1135-1140 (2009) · Zbl 1177.47044 · doi:10.4134/BKMS.2009.46.6.1135
[12]Pan, C.: On an integral-type operator from QK (p,q) spaces to α-Bloch spaces, Filomat 25, No. 4, 150-160 (2011)
[13]H.J. Schwartz, Composition operators on Hp, Thesis, University of Toledo 1969.
[14]Smith, W.; Zhao, R.: Composition operators mapping into qp space, Analysis 17, 239-262 (1997) · Zbl 0901.47023
[15]Stević, S.: On an integral operator on the unit ball in cn, J. inequal. Appl. vol. 2005, No. 1, 81-88 (2005) · Zbl 1074.47013 · doi:10.1155/JIA.2005.81
[16]Stević, S.: On a new operator from H to the Bloch-type space on the unit ball, Util. math. 77, 257-263 (2008) · Zbl 1175.47034
[17]Stević, S.: On a new operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Appl. math. Comput. 206, 313-320 (2008) · Zbl 1162.47029 · doi:10.1016/j.amc.2008.09.002
[18]Stević, S.: Norm and essential norm of composition followed by differentiation from α-Bloch spaces to Hμ, Appl. math. Comput. 207, 225-229 (2009) · Zbl 1157.47026 · doi:10.1016/j.amc.2008.10.032
[19]Stević, S.: Products of composition and differentiation operators on the weighted Bergman space, Bull. belg. Math. soc. Simon stevin 16, 623-635 (2009) · Zbl 1181.30031 · doi:euclid:bbms/1257776238
[20]Stević, S.: On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. math. Anal. appl. 354, 426-434 (2009) · Zbl 1171.47028 · doi:10.1016/j.jmaa.2008.12.059
[21]Stević, S.: On an integral operator from the Zygmund space to the Bloch-type space on the unit ball, Glasg. J. Math. 51, 275-287 (2009) · Zbl 1176.47029 · doi:10.1017/S0017089508004692
[22]Stević, S.: Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces, Siberian math. J. 50, No. 4, 726-736 (2009) · Zbl 1219.47050 · doi:http://www.emis.de/journals/SMZ/2009/04/915.html
[23]Stević, S.: Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. math. Comput. 211, 222-233 (2009) · Zbl 1165.30029 · doi:10.1016/j.amc.2009.01.061
[24]Stević, S.: On an integral operator between Bloch-type spaces on the unit ball, Bull. sci. Math. 134, 329-339 (2010) · Zbl 1189.47032 · doi:10.1016/j.bulsci.2008.10.005
[25]Stević, S.: On an integral-type operator from logarithmic Bloch-type spaces to mixed-norm spaces on the unit ball, Appl. math. Comput. 215, 3817-3823 (2010) · Zbl 1184.30052 · doi:10.1016/j.amc.2009.11.022
[26]Stević, S.: On operator Pϕg from the logarithmic Bloch-type space to the mixed-norm space on unit ball, Appl. math. Comput. 215, 4248-4255 (2010)
[27]Stević, S.: Weighted differentiation composition operators from H and Bloch spaces to nth weigthed-type spaces on the unit disk, Appl. math. Comput. 216, 3634-3641 (2010) · Zbl 1195.30073 · doi:10.1016/j.amc.2010.05.014
[28]S. Stević, On some integral-type operators between a general space and Bloch-type spaces, Appl. Math. Comput. (to appear).
[29]Stević, S.; Sharma, A. K.; Bhat, A.: Products of multiplication composition and differentiation operators on weighted Bergman spaces, Appl. math. Comput. 217, 8115-8125 (2011) · Zbl 1218.30152 · doi:10.1016/j.amc.2011.03.014
[30]Stević, S.; Ueki, S. I.: Integral-type operators acting between weighted-type spaces on the unit ball, Appl. math. Comput. 215, 2464-2471 (2009) · Zbl 1197.47061 · doi:10.1016/j.amc.2009.08.050
[31]Stević, S.; Ueki, S. I.: On an integral-type operator between weighted-type spaces and Bloch-type spaces on the unit ball, Appl. math. Comput. 217, 3127-3136 (2010) · Zbl 1219.47066 · doi:10.1016/j.amc.2010.08.045
[32]Xiao, J.: Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball, J. London math. Soc. 70, No. 2, 199-214 (2004) · Zbl 1064.47034 · doi:10.1112/S0024610704005484
[33]Yang, W.: On an integral-type operator between Bloch-type spaces, Appl. math. Comput. 215, No. 3, 954-960 (2009) · Zbl 1185.45020 · doi:10.1016/j.amc.2009.06.016
[34]Yang, W.; Meng, X.: Generalized composition operators from F(p,q,s) spaces to Bloch-type spaces, Appl. math. Comput. 217, No. 6, 2513-2519 (2010) · Zbl 1221.47048 · doi:10.1016/j.amc.2010.07.063
[35]Zhao, R.: On logarithmic Carleson measure, Acta sci. Math. 69, 605-618 (2003) · Zbl 1050.30024
[36]Zhu, K.: Bloch type spaces of analytic functions, Rocky mountain J. Math. 23, 1143-1177 (1993) · Zbl 0787.30019 · doi:10.1216/rmjm/1181072549
[37]Zhu, X.: Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49, No. 2, 139-149 (2007) · Zbl 1130.47017
[38]Zhu, X.: Products of differentiation, composition and multiplication from Bergman type spaces to bers spaces, Integral transform. Spec. funct. 18, No. 3, 223-231 (2007) · Zbl 1119.47035 · doi:10.1080/10652460701210250
[39]Zhu, X.: Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces, Appl. math. Comput. 215, No. 3, 1170-1175 (2009) · Zbl 1185.45021 · doi:10.1016/j.amc.2009.06.052