zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two optimal eighth-order derivative-free classes of iterative methods. (English) Zbl 1253.65100
Summary: Optimization problems defined by (objective) functions for which derivatives are unavailable or available at an expensive cost are emerging in computational science. Due to this, the main aim of this paper is to attain as high as possible of local convergence order by using fixed number of (functional) evaluations to find efficient solvers for one-variable nonlinear equations, while the procedure to achieve this goal is totally free from derivative. To this end, we consider the fourth-order uniparametric family of Kung and Traub to suggest and demonstrate two classes of three-step derivative-free methods using only four pieces of information per full iteration to reach the optimal order eight and the optimal efficiency index 1.682. Moreover, a large number of numerical tests are considered to confirm the applicability and efficiency of the produced methods from the new classes.
MSC:
65K05Mathematical programming (numerical methods)
90C29Multi-objective programming; goal programming