zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A modified conjugate gradient algorithm with cyclic Barzilai-Borwein steplength for unconstrained optimization. (English) Zbl 1253.65101

From the authors’ abstract: For solving large-scale unconstrained minimization problems, the nonlinear conjugate gradient method is welcome due to its simplicity, low storage, efficiency and nice convergence properties. Among all the methods in the framework, the conjugate gradient descent algorithm – CG_DESCENT is very popular, in which the generated directions descend automatically, and this nice property is independent of any line search used.

In this paper, the authors generalize CG_DESCENT with two Barzilai-Borwein steplength reused cyclically. It is shown that the resulting algorithm owns an attractive sufficient descent property and converges globally under some mild conditions. The proposed algorithm is tested by using a large set of unconstrained problems with high dimensions in CUTEr library. The numerical comparisons with the state-of-the-art algorithm CG_DESCENT illustrate that the proposed method is effective, competitive, and promising.

MSC:
65K05Mathematical programming (numerical methods)
90C06Large-scale problems (mathematical programming)
90C30Nonlinear programming
Software:
CUTEr; CG_DESCENT
References:
[1]Nocedal, J.; Wright, J. S.: Numerical optimization, (1999)
[2]Fletcher, R.; Reeves, C.: Function minimization by conjugate gradients, The comput. J. 7, 149-154 (1964) · Zbl 0132.11701 · doi:10.1093/comjnl/7.2.149
[3]Polak, E.; Ribière, G.: Note sur la convergence de directions conjugées, Rev. fr. Inform. rech. Oper. 16, 35-43 (1969) · Zbl 0174.48001
[4]Hestenes, M. R.; Stiefel, E. L.: Methods of conjugate gradient for solving linear systems, J. res. Nat. bur. Stand. 49, 409-436 (1952) · Zbl 0048.09901
[5]Dai, Y. H.; Yuan, Y.: A nonlinear conjugate gradient method with a strong global convergence property, SIAM J. Optim. 10, 177-182 (1999) · Zbl 0957.65061 · doi:10.1137/S1052623497318992
[6]Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method, Lecture notes in mathematics 1066, 122-141 (1984) · Zbl 0531.65035
[7]Hager, W. W.; Zhang, H.: A survey of nonlinear conjugate gradient methods, Pac. J. Optim. 2, 35-58 (2006) · Zbl 1117.90048
[8]Gilbert, J. C.; Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization, SIAM J. Optim. 2, 21-42 (1992) · Zbl 0767.90082 · doi:10.1137/0802003
[9]Grippo, L.; Lucidi, S.: A globally convergent version of the polak–ribière conjugate gradient method, Math. program. 78, 375-391 (1997) · Zbl 0887.90157 · doi:10.1007/BF02614362
[10]Li, G.; Tang, C.; Wei, Z.: New conjugacy condition and related new conjugate gradient methods for unconstrained optimization, J. comput. Appl. math. 202, 523-539 (2007) · Zbl 1116.65069 · doi:10.1016/j.cam.2006.03.005
[11]Dai, Y. H.; Liao, L. Z.: New conjugate conditions and related nonlinear conjugate gradient methods, Appl. math. Optim. 43, 87-101 (2001) · Zbl 0973.65050 · doi:10.1007/s002450010019
[12]Hager, W. W.; Zhang, H.: A new conjugate gradient method with guaranteed descent and an effcient line search, SIAM J. Optim. 16, 170-192 (2005) · Zbl 1093.90085 · doi:10.1137/030601880
[13]J. Zhang, Y. Xiao, Z. Wei, Nonlinear conjugate gradient methods with sufficient descent condition for large-scale unconstrained pptimization, Math. Prob. Eng., Volume 2009, Article ID 243290, 16 pages. · Zbl 1184.65066 · doi:10.1155/2009/243290
[14]An, X. M.; Li, D. H.; Xiao, Y.: Sufficient descent directions in unconstrained optimization, Comput. optim. Appl. 48, 515-532 (2011)
[15]Barzilai, J.; Borwein, J. M.: Two point step size gradient method, IMA J. Numer. anal. 8, 141-148 (1988) · Zbl 0638.65055 · doi:10.1093/imanum/8.1.141
[16]Conn, A. R.; Gould, N. I. M.; Toint, Ph.L.: CUTE: constrained and unconstrained testing environment, ACM T. Math. software 21, 123-160 (1995) · Zbl 0886.65058 · doi:10.1145/200979.201043 · doi:http://www.acm.org/pubs/contents/journals/toms/1995-21/
[17]Dai, Y. H.; Liao, L. Z.: R-linear convergence of the barzilai and Borwein gradient method, IMA J. Numer. anal. 26, 1-10 (2002) · Zbl 1002.65069 · doi:10.1093/imanum/22.1.1
[18]Raydan, M.: On the barzilai and Borwein choice of steplength for the gradient method, IMA J. Numer. anal. 13, 321-326 (1993) · Zbl 0778.65045 · doi:10.1093/imanum/13.3.321
[19]Raydan, M.: The barzilai and Borwein gradient method for the large scale unconstrained minimization problem, SIAM J. Optim. 7, 26-33 (1997) · Zbl 0898.90119 · doi:10.1137/S1052623494266365
[20]Birgin, E. G.; Martínez, J. M.; Raydan, M.: Nonmonotone spectral projected gradient methods on convex sets, SIAM J. Optim. 10, 1196-1211 (2000) · Zbl 1047.90077 · doi:10.1137/S1052623497330963
[21]Xiao, Y.; Hu, Q.: Subspace barzilai–Borwein gradient method for large-scale bound constrained optimization, Appl. math. Optim. 58, 275-290 (2008) · Zbl 1173.90584 · doi:10.1007/s00245-008-9038-9
[22]Dai, Y. H.; Hager, W. W.; Schitkowski, K.; Zhang, H. C.: The cyclic barzilai–Borwein method for unconstrained optimization, IMA J. Numer. anal. 26, 1-24 (2006) · Zbl 1147.65315 · doi:10.1093/imanum/drl006
[23]Dai, Y. H.: On the asymptotic behaviour of some new gradient methods, Math. program. 103, 541-559 (2005) · Zbl 1099.90038 · doi:10.1007/s10107-004-0516-9
[24]Zoutendijk, G.: Nonlinear programming, computational methods, Integer and nonlinear programming, 37-86 (1970) · Zbl 0336.90057
[25]

Hager, W. W.; Zhang, H.: Algorithm 851: CG

DESCENT, a conjugate gradient method with guaranteed descent, ACM T. Math. software 32, 113-137 (2006)

[26]Dolan, E. D.; Moré, J. J.: Benchmarking optimization software with performance profiles, Math. program. 91, 201-213 (2002) · Zbl 1049.90004 · doi:10.1007/s101070100263