zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A hybrid human dynamics model on analyzing hotspots in social networks. (English) Zbl 1253.91159
Summary: The increasing development of social networks provides a unique source for analyzing human dynamics in the modern age. In this paper, we analyze the top-one Internet forum in China (“Tianya Club”) and identify the statistical properties of hotspots, which can promptly reflect the crowd events in people’s real-life. Empirical observations indicate that the interhotspot distribution follows a power law. To further understand the mechanism of such dynamic phenomena, we propose a hybrid human dynamic model that combines “memory” of individual and “interaction” among people. To build a rich simulation and evaluate this hybrid model, we apply three different network datasets (i.e., WS network, BA network, and Karate-Club). Our simulation results are consistent with the empirical studies, which indicate that the model can provide a good understanding of the dynamic mechanism of crowd events using such social networking data. We additionally analyze the sensitivity of model parameters and find the optimal model settings.
MSC:
91D30Social networks
68M11Internet topics