zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust dissipativity analysis of neural networks with time-varying delay and randomly occurring uncertainties. (English) Zbl 1253.93040
Summary: This paper investigates the problem of robust dissipativity analysis for uncertain neural networks with time-varying delay. The norm-bounded uncertainties enter into the neural networks in randomly ways, and such Randomly Occurring Uncertainties (ROUs) obey certain mutually uncorrelated Bernoulli distributed white noise sequences. By employing the Linear Matrix Inequality (LMI) approach, a sufficient condition is established to ensure the robust stochastic stability and dissipativity of the considered neural networks. Some special cases are also considered. Two numerical examples are given to demonstrate the validness and the less conservatism of the obtained results.
MSC:
93B35Sensitivity (robustness) of control systems
92B20General theory of neural networks (mathematical biology)
93C15Control systems governed by ODE
93E12System identification (stochastic systems)
References:
[1]Gupta, M.M., Jin, L., Homma, N.: Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory. Wiley/IEEE Press, New York (2003)
[2]Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993)
[3]Shu, Z., Lam, J.: Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays. Int. J. Control 81, 865–882 (2008) · Zbl 1152.93462 · doi:10.1080/00207170701261986
[4]Zhang, L., Boukas, E.K., Lam, J.: Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans. Autom. Control 53, 2458–2464 (2008) · doi:10.1109/TAC.2008.2007867
[5]Gao, H., Meng, X., Chen, T.: Stabilization of networked control systems with a new delay characterization. IEEE Trans. Autom. Control 53, 2142–2148 (2008) · doi:10.1109/TAC.2008.930190
[6]Faydasicok, O., Arik, S.: Equilibrium and stability analysis of delayed neural networks under parameter uncertainties. Appl. Math. Comput. (2012). doi: 10.1016/j.amc.2011.12.036
[7]Faydasicok, O., Arik, S.: Further analysis of global robust stability of neural networks with multiple time delays. J. Franklin Inst. (2011). doi: 10.1016/j.jfranklin.2011.11.007
[8]Wang, G., Cao, J., Wang, L.: Global dissipativity of stochastic neural networks with time delay. J. Franklin Inst. 346, 794–807 (2009) · doi:10.1016/j.jfranklin.2009.04.003
[9]Arik, S.: On the global dissipativity of dynamical neural networks with time delays. Phys. Lett. A 326, 126–132 (2004) · Zbl 1161.37362 · doi:10.1016/j.physleta.2004.04.023
[10]Song, Q., Zhao, Z.: Global dissipativity of neural networks with both variable and unbounded delays. Chaos Solitons Fractals 25, 393–401 (2005) · Zbl 1072.92005 · doi:10.1016/j.chaos.2004.11.035
[11]He, Y., Liu, G., Rees, D.: New delay-dependent stability criteria for neural networks with time-varying delay. IEEE Trans. Neural Netw. 18, 310–314 (2007) · doi:10.1109/TNN.2006.888373
[12]Wu, L., Feng, Z., Zheng, W.: Exponential stability analysis for delayed neural networks with switching parameters: Average dwell time approach. IEEE Trans. Neural Netw. 21, 1396–1407 (2010) · doi:10.1109/TNN.2010.2056383
[13]Liu, Y., Wang, Z., Serrano, A., Liu, X.: Discrete-time recurrent neural networks with time-varying delays: exponential stability analysis. Phys. Lett. A 362, 480–488 (2007) · doi:10.1016/j.physleta.2006.10.073
[14]Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Improved global robust asymptotic stability criteria for delayed cellular neural networks. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 35, 1317–1321 (2005) · doi:10.1109/TSMCB.2005.851539
[15]Liu, Y., Wang, Z., Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays. Neural Netw. 19, 667–675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015
[16]Park, J.H., Kwon, O.M.: Further results on state estimation for neural networks of neutral-type with time-varying delay. Appl. Math. Comput. 208, 69–75 (2009) · Zbl 1169.34334 · doi:10.1016/j.amc.2008.11.017
[17]Ji, D.H., Park, J.H., Lee, S.M., Koo, J.H., Won, S.C.: Synchronization criterion for Lur’e systems via delayed PD controller. J. Optim. Theory Appl. 147, 298–317 (2010) · Zbl 1202.93138 · doi:10.1007/s10957-010-9723-0
[18]Wu, Z.G., Park, J.H., Su, H., Chu, J.: Dissipativity analysis for singular systems with time-varying delays. Appl. Math. Comput. 218, 4605–4613 (2011) · Zbl 1256.34062 · doi:10.1016/j.amc.2011.10.044
[19]Kwon, O.M., Lee, S., Park, J.H.: Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays. Phys. Lett. A 374, 1232–1241 (2010) · Zbl 1236.92006 · doi:10.1016/j.physleta.2010.01.007
[20]Wang, Z., Liu, Y., Yu, L., Liu, X.: Exponential stability of delayed recurrent neural networks with Markovian jumping parameters. Phys. Lett. A 356, 346–352 (2006) · Zbl 1160.37439 · doi:10.1016/j.physleta.2006.03.078
[21]Wang, Z., Liu, Y., Fraser, K., Liu, X.: Stochastic stability of uncertain Hopfield neural networks with discrete and distributed delays. Phys. Lett. A 354, 288–297 (2006) · Zbl 1181.93068 · doi:10.1016/j.physleta.2006.01.061
[22]Cao, J., Yuan, K., Li, X.: Global asymptotical stability of generalized recurrent neural networks with multiple discrete delays and distributed delays. IEEE Trans. Neural Netw. 17, 1646–1651 (2007) · doi:10.1109/TNN.2006.881488
[23]Mou, S., Gao, H., Lam, J., Qiang, W.: A new criterion of delay-dependent asymptotic stability for Hopfield neural networks with time delay. IEEE Trans. Neural Netw. 19, 532–535 (2008) · doi:10.1109/TNN.2007.912593
[24]Feng, Z., Lam, J.: Stability and dissipativity analysis of distributed delay cellular neural networks. IEEE Trans. Neural Netw. 22, 976–981 (2011) · doi:10.1109/TNN.2011.2128341
[25]Song, Q., Cao, J.: Passivity of uncertain neural networks with both leakage delay and time-varying delay. Nonlinear Dyn. 67, 1695–1707 (2012) · Zbl 1242.92005 · doi:10.1007/s11071-011-0097-0
[26]Lian, J., Zhang, K.: Exponential stability for switched Cohen-Grossberg neural networks with average dwell time. Nonlinear Dyn. 63, 331–343 (2011) · doi:10.1007/s11071-010-9807-2
[27]Chen, Y., Wang, H., Xue, A., Lu, R.: Passivity analysis of stochastic time-delay neural networks. Nonlinear Dyn. 61, 71–82 (2010) · Zbl 1204.93126 · doi:10.1007/s11071-009-9632-7
[28]Zhang, H., Guan, Z., Feng, G.: Reliable dissipative control for stochastic impulsive system. Automatica 44, 1004–1010 (2008) · doi:10.1016/j.automatica.2007.08.018
[29]Masubuchi, I.: Dissipativity inequalities for continuous-time descriptor systems with applications to synthesis of control gains. Syst. Control Lett. 55, 158–164 (2008) · Zbl 1129.93475 · doi:10.1016/j.sysconle.2005.06.007
[30]Feng, Z., Lam, J., Gao, H.: α-dissipativity analysis of singular time-delay systems. Automatica 47, 2548–2552 (2011) · Zbl 1228.93039 · doi:10.1016/j.automatica.2011.06.025
[31]Hu, J., Wang, Z., Gao, H., Stergioulas, L.K.: Robust sliding mode control for discrete stochastic systems with mixed time-delays, randomly occurring uncertainties and nonlinearities. IEEE Trans. Ind. Electron. (2011). doi: 101109/TIE.2011.2168791
[32]Gu, K., Kharitonov, V.K., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003)
[33]Xie, L.: Output feedback H control of systems with parameter uncertainty. Int. J. Control 63, 741–750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[34]Gao, H., Wu, J., Shi, P.: Robust sampled-data H control with stochastic sampling. Automatica 45, 1729–1736 (2009) · Zbl 1184.93039 · doi:10.1016/j.automatica.2009.03.004
[35]Shen, B., Wang, Z., Liu, X.: A stochastic sampled-data approach to distributed H filtering in sensor networks. IEEE Trans. Circuits Syst. I, Regul. Pap. 58, 2237–2246 (2011) · doi:10.1109/TCSI.2011.2112594
[36]Park, P.G., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014
[37]Zeng, H., He, Y., Wu, M., Xiao, S.: Passivity analysis for neural networks with a time-varying delay. Neurocomputing 74, 730–734 (2011) · doi:10.1016/j.neucom.2010.09.020
[38]Xu, S., Zheng, W., Zou, Y.: Passivity analysis of neural networks with time-varying delays. IEEE Trans. Circuits Syst. Part II, Express Briefs 56, 325–329 (2009) · doi:10.1109/TCSII.2009.2015399