zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controlled synchronization of discrete-time chaotic systems under communication constraints. (English) Zbl 1253.93080
Summary: This paper investigates the controlled synchronization problem for a class of nonlinear discrete-time chaotic systems subject to limited communication capacity. A general chaotic master system and its slave system with a controller are connected via a limited capacity channel. In this case, the effect of quantization errors is considered. A practical quantized scheme is proposed so that the synchronization error is input-to-state stable with respect to the transmission error. Meanwhile, the transmission error decays to zero exponentially. This implies that the synchronization error converges to zero under a limited communication channel. A simulation example for the Fold chaotic system is presented to illustrate the effectiveness of the proposed method.
MSC:
93C55Discrete-time control systems
34H10Chaos control (ODE)
References:
[1]Boccaletti, S., Kurths, J., Osipov, G., Valladares, D.L., Zhou, C.S.: The synchronization of chaotic systems. Phys. Rep. 366, 1–101 (2002) · Zbl 0995.37022 · doi:10.1016/S0370-1573(02)00137-0
[2]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[3]Liao, T.L., Huang, N.S.: Control and synchronization of discrete-time chaotic systems via variable structure control technique. Phys. Lett. A 234, 262–267 (1997) · Zbl 1044.37556 · doi:10.1016/S0375-9601(97)00472-6
[4]Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) · Zbl 1215.93127 · doi:10.1007/s11071-010-9800-9
[5]Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010) · Zbl 1183.70073 · doi:10.1007/s11071-009-9537-5
[6]Lü, J.H., Chen, G.R.: Generating multiscroll chaotic attractors: theories, methods and applications. Int. J. Bifurc. Chaos 16, 775–858 (2006) · Zbl 1097.94038 · doi:10.1142/S0218127406015179
[7]Lü, J.H., Chen, G.R., Cheng, D.Z., Celikovský, S.: Bridge the gap between the Lorenz system and the Chen system. Int. J. Bifurc. Chaos 12, 2917–2926 (2002) · Zbl 1043.37026 · doi:10.1142/S021812740200631X
[8]Li, T., Yu, J., Wang, Z.: Delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control. Commun. Nonlinear Sci. Numer. Simul. 14, 1796–1803 (2009) · Zbl 1221.93224 · doi:10.1016/j.cnsns.2008.06.018
[9]Zhang, H.G., Huang, W., Wang, Z.L., Chai, T.Y.: Adaptive synchronization between two different chaotic systems with unknown parameters. Phys. Lett. A 350, 363–366 (2006) · Zbl 1195.93121 · doi:10.1016/j.physleta.2005.10.033
[10]Yassen, M.T.: Controlling synchronization and tracking chaotic Liu system using active backstepping design. Phys. Lett. A 360, 582–587 (2007) · Zbl 1236.93086 · doi:10.1016/j.physleta.2006.08.067
[11]Carroll, T.L., Pecora, L.M.: Synchronizing chaotic circuits. IEEE Trans. Circuits Syst. 38, 453–456 (1991) · doi:10.1109/31.75404
[12]Ji, D.H., Park, J.H., Yoo, W.J., Won, S.C., Lee, S.M.: Synchronization criterion for Lur’e type complex dynamical networks with time-varying delay. Phys. Lett. A 374, 1218–1227 (2010) · Zbl 1236.05186 · doi:10.1016/j.physleta.2010.01.005
[13]Han, Q.L.: New delay-dependent synchronization criteria for Lur’e systems using time delay feedback control. Phys. Lett. A 360, 563–569 (2007) · Zbl 1236.93072 · doi:10.1016/j.physleta.2006.08.076
[14]Blekhman, I.I., Fradkov, A.L., Nijmeijer, H., Pogromsky, A.Y.: On self-synchronization and controlled synchronization. Syst. Control Lett. 31, 299–305 (1997) · Zbl 0901.93028 · doi:10.1016/S0167-6911(97)00047-9
[15]Fradkov, A.L., Pogromsky, A.Y.: Introduction to Control of Oscillations and Chaos. World Scientific Publishers, Singapore (1998)
[16]Brockett, R.W., Liberzon, D.: Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Control 45, 1279–1289 (2000) · Zbl 0988.93069 · doi:10.1109/9.867021
[17]Wang, Z.M., Wang, G.X., Liu, W.: Stabilisation of two-time scale systems with a finite feedback data rate. IET Control Theory Appl. 4, 2603–2612 (2010) · doi:10.1049/iet-cta.2009.0173
[18]Liberzon, D.: Hybrid feedback stabilization of systems with quantized signals. Automatica 39, 1543–1554 (2003) · Zbl 1030.93042 · doi:10.1016/S0005-1098(03)00151-1
[19]Hespanha, J., Ortega, A., Vasudevan, L.: Towards the control of linear systems with minimum bit-rate. In: Proc. of the 15th Int. Symposium on Mathematical Theory of Networks and Sys., Notre Dame, IN, August 2002, pp. 1–15 (2002)
[20]Fradkov, A.L., Andrievsky, B., Evans, R.J.: Chaotic observer-based synchronization under information constraints. Phys. Rev. E 73, 1–8 (2006)
[21]Fradkov, A.L., Andrievsky, B., Andrievsky, A.: Observer-based synchronization of discrete-time chaotic systems under communication constraints. In: Proceedings of the 17th IFAC World Congress (IFAC’08), Seoul, Korea, pp. 3719–3724 (2008)
[22]Wang, G.X., Wang, Z.M., Lu, G.P.: Chaotic synchronization with limited information. Int. J. Bifurc. Chaos 18, 3137–3145 (2008) · Zbl 1165.34374 · doi:10.1142/S0218127408022305
[23]Jiang, Z.P., Sontag, E., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica 37, 857–869 (2001) · Zbl 0989.93082 · doi:10.1016/S0005-1098(01)00028-0
[24]Liu, B., Liu, X.Z.: Robust stability of uncertain discrete impulsive systems. IEEE Trans. Circuits Syst. II, Express Briefs 54, 455–459 (2007) · doi:10.1109/TCSII.2007.892395