zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New walking dynamics in the simplest passive bipedal walking model. (English) Zbl 1254.70020
Summary: We revisit the simplest passive walking model by M. Garcia et al. “The simplest walking model: stability, complexity, and scaling”, J. Biomech. Eng. Trans. ASME 120, 281–288 (1998)] which displays chaos through period doubling from a stable period-1 gait. By carefully numerical studies, two new gaits with period-3 and -4 are found, whose stability is verified by estimates of eigenvalues of the corresponding Jacobian matrices. A surprising phenomenon uncovered here is that they both lead to higher periodic cycles and chaos via period doubling. To study the three different types of chaotic gaits rigorously, the existence of horseshoes is verified and estimates of the topological entropies are made by computer-assisted proofs in terms of topological horseshoe theory.
MSC:
70E17Motion of a rigid body with a fixed point
34C23Bifurcation (ODE)
34C28Complex behavior, chaotic systems (ODE)
34C25Periodic solutions of ODE
References:
[1]Collins, S.; Ruina, A.; Tedrake, R.; Wisse, M.: Efficient bipedal robots based on passive-dynamic walkers, Science 307, 1082-1085 (2005)
[2]G. Berman, J.A. Ting, Exploring passive-dynamic walking, in: Complex Systems Summer School, 2005.
[3]Verdaasdonk, B. W.; Koopman, H. F. J.M.; Van Der Helm, F. C. T.: Energy efficient walking with central pattern generators: from passive dynamic walking to biologically inspired control, Biol. cybern. 101, 49-61 (2009)
[4]Mcgeer, T.: Passive dynamic walking, Int. J. Robot. res. 9, 62-82 (1990)
[5]Garcia, M.; Chatterjee, A.; Ruina, A.; Coleman, M.: The simplest walking model: stability, complexity, and scaling, J. biomech. Eng. trans. ASME 120, 281-288 (1998)
[6]Goswami, A.; Espiau, B.; Keramane, A.: Limit cycles in a passive compass gait biped and passivity-mimicking control laws, Auton. robot 4, 273-286 (1997)
[7]Goswami, A.; Thuilot, B.; Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos, Int. J. Robot. res. 17, 1282-1301 (1998)
[8]Wisse, M.; Schwab, A. L.; Van Der Helm, F. C. T.: Passive dynamic walking model with upper body, Robotica 22, 681-688 (2004)
[9]Safa, A. T.; Saadat, M. G.; Naraghi, M.: Passive dynamic of the simplest walking model: replacing ramps with stairs, Mech. Mach theory 42, 1314-1325 (2007) · Zbl 1130.70005 · doi:10.1016/j.mechmachtheory.2006.11.001
[10]Kumar, R. P.; Yoon, J.; Christiand; Kim, G.: The simplest passive dynamic walking model with toed feet: a parametric study, Robotica 27, 701-713 (2009)
[11]Kurz, M. J.; Judkins, T. N.; Arellano, C.; Scott-Pandorf, M.: A passive dynamic walking robot that has a deterministic nonlinear gait, J. biomech. 41, 1310-1316 (2008)
[12]A. Schwab, M. Wisse, Basin of attraction of the simplest walking model, in: Proceedings of Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, Pennsylvania, Proceedings of DETC’01 ASME 2001, 2001.
[13]Li, Q.; Zhou, H.; Yang, X. -S.: A study of basin of attraction of the simplest walking model based on heterogeneous computation, Acta phys. Sin. (in chinese) 61, 040503 (2012)
[14]Yang, X. -S.; Tang, Y.: Horseshoes in piecewise continuous maps, Chaos soliton fract. 19, 841-845 (2004) · Zbl 1053.37006 · doi:10.1016/S0960-0779(03)00202-9
[15]Yang, X. S.: Topological horseshoes and computer assisted verification of chaotic dynamics, Int. J. Bifurcat. chaos 19, 1127-1145 (2009) · Zbl 1168.37301 · doi:10.1142/S0218127409023548
[16]Robinson, R. C.; Robinson, C.: Dynamical systems: stability, symbolic dynamics, and chaos, (1999)
[17]Li, Q.; Yang, X. -S.: A simple method for finding topological horseshoes, Int. J. Bifurcat. chaos 20, 467-478 (2010) · Zbl 1188.37035 · doi:10.1142/S0218127410025545
[18]Li, Q.; Yang, X. -S.; Chen, S.: Hyperchaos in a spacecraft power system, Int. J. Bifurcat. chaos 21, 1719-1726 (2011)
[19]Li, Q.; Chen, S.; Zhou, P.: Horseshoe and entropy in a fractional-order unified system, Chinese phys. B. 20 (2011)