zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An analytical solution for a low velocity impact between a rigid sphere and a transversely isotropic strain-hardening plate supported by a rigid substrate. (English) Zbl 1254.74091
Summary: An analytical solution for a low velocity impact between a thin transversely isotropic plate made of a strain-hardening material supported by a rigid substrate and a rigid sphere is presented. One of the novelties of this work is employing a linear strain-hardening model for investigating the indentation phenomenon in the plastic zone, rather than the traditional perfectly plastic model. Another novelty of this work is employing the homotopy perturbation method to derive analytical solutions for the highly nonlinear governing equations of contact. Since it is very important to accurately predict the contact force and its time history, the three stages of the indentation process, i.e., (1) the elastic indentation, (2) the plastic indentation, and (3) the elastic unloading stages, are investigated in detail. Comparison of the present results with results obtained from the iterative numerical time integration method confirms the accuracy and efficiency of the present solution.
MSC:
74M20Impact (solid mechanics)
74K20Plates (solid mechanics)
74G10Analytic approximation of solutions for equilibrium problems in solid mechanics
References:
[1]Shariyat M (2006) Automotive body: analysis and design. K. N. Toosi University Press, Tehran
[2]Ollson R (1992) Impact response of orthotropic composite plates predicted form a one-parameter differential equation. AIAA J 30(6): 1587–1596 · Zbl 0825.73112 · doi:10.2514/3.11105
[3]Yigit AS, Christoforou AP (1994) On the impact of a spherical indenter and an elastic–plastic transversely isotropic half-space. Compos Eng 4(11): 1143–1152 · doi:10.1016/0961-9526(95)91288-R
[4]Yigit AS, Christoforou AP (1995) On the impact between a rigid sphere and a thin composite laminate supported by a rigid substrate. Compos Struct 30(2): 169–177 · doi:10.1016/0263-8223(94)00037-9
[5]Christoforou AP, Yigit AS (1998) Characterization of impact in composite plates. Compos Struct 43: 5–24 · doi:10.1016/S0263-8223(98)00087-7
[6]Christoforou AP, Yigit AS (1998) Effect of flexibility on low velocity impact response. J Sound Vib 217: 563–578 · doi:10.1006/jsvi.1998.1807
[7]Yigit AS, Christoforou AP (2007) Limits of asymptotic solutions in low-velocity impact of composite plates. Compos Struct 81: 568–574 · doi:10.1016/j.compstruct.2006.10.006
[8]Zheng D, Binienda WK (2007) Effect of permanent indentation on the delamination threshold for small mass impact on plates. Int J Solids Struct 44: 8143–8158 · Zbl 1167.74523 · doi:10.1016/j.ijsolstr.2007.06.005
[9]Zheng D, Binienda WK (2009) Semianalytical solution of wave-controlled impact on composite laminates. ASCE J Aero Eng 22(3): 318–323 · doi:10.1061/(ASCE)0893-1321(2009)22:3(318)
[10]Christoforou AP, Yigit AS (2009) Scaling of low-velocity impact response in composite structures. Compos Struct 91: 358–365 · doi:10.1016/j.compstruct.2009.06.002
[11]Swanson SR (2004) Hertzian contact of orthotropic materials. Int J Solids Struct 41: 1945–1959 · Zbl 1106.74386 · doi:10.1016/j.ijsolstr.2003.11.003
[12]Swanson SR (2005) Contact deformation and stress in orthotropic plates. Compos A 36: 1421–1429 · doi:10.1016/j.compositesa.2004.11.011
[13]Chen P, Xiong J, Shen Z (2008) Thickness effect on the contact behavior of a composite laminate indented by a rigid sphere. Mech Mater 40: 183–194 · doi:10.1016/j.mechmat.2007.07.003
[14]He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178: 257–262 · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[15]He JH (2000) A coupling method of homotopy technique and perturbation technique for nonlinear problems. Int J Non-Linear Mech 35(1): 37–43 · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[16]He JH (2004) The homotopy perturbation method for nonlinear oscillators with discontinuities. Appl Math Comput 151: 287–292 · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[17]Shou D-H (2009) The homotopy perturbation method for nonlinear oscillators. Comput Math Appl 58: 2456–2459 · Zbl 1189.65176 · doi:10.1016/j.camwa.2009.03.034
[18]Ganji DD, Alipour MM, Fereidoon AH, Rostamiyan Y (2010) Analytic approach to investigation of fluctuation and frequency of the oscillators with odd and even nonlinearities. Int J Eng 23(1): 41–56
[19]Alipour MM, Shariyat M, Shaban M (2010) A semi-analytical solution for free vibration of variable thickness two-directional-functionally graded plates on elastic foundations. Int J Mech Mater Des 6(4): 293–304 · doi:10.1007/s10999-010-9134-2
[20]Alipour MM, Shariyat M, Shaban M (2010) A semi-analytical solution for free vibration and modal stress analyses of circular plates resting on two-parameter elastic foundations. J Solid Mech 2(1): 63–78
[21]Christoforou AP (1993) On the contact of a spherical indenter and a thin composite laminate. Compos Struct 28: 77–82 · doi:10.1016/0263-8223(93)90046-S
[22]Christoforou AP (2001) Impact dynamics and damage in composite structures. Compos Struct 52(2): 181–188 · doi:10.1016/S0263-8223(00)00166-5
[23]Christoforou AP, Yigit AS (1995) Transient response of a composite beam subject to elasto-plastic impact. Compos Eng 5(5): 459–470 · doi:10.1016/0961-9526(95)00018-I
[24]Conway HD, Lee HC, Bayer RG (1970) The impact between a rigid sphere and a thin layer. J Appl Mech 37: 159–162 · doi:10.1115/1.3408425
[25]Jaffar MJ (1989) Asymptotic behaviour of thin elastic layers bonded and unbonded to a rigid foundation. Int J Mech Sci 31(3): 229–235 · doi:10.1016/0020-7403(89)90113-6
[26]Tan TM, Sun CT (1985) Use of statistical indentation laws in the impact analysis of laminated composite plates. J Appl Mech 52: 6–12 · doi:10.1115/1.3169029
[27]Cairns DS, Lagace PA (1987) Thick composite plates subjected to lateral loading. J Appl Mech 54: 611–615 · Zbl 0618.73079 · doi:10.1115/1.3173077
[28]Poe CC Jr, Illg W (1989) Strength of a thick graphite/epoxy rocket motor case after impact by a blunt object. In: Chamis CC (ed) Test methods for design allowables for fibrous composites, vol 2, ASTM STP 1003. ASTM, Philadelphia, pp 150–179
[29]Poe CC Jr (1988) Simulated impact damage in a thick graphite/epoxy laminate using spherical indenters. NASA TM 100539
[30]Bathe KJ (2007) Finite element procedures. Prentice Hall, Englewood Cliffs, NJ
[31]Reddy JN (2005) An introduction to the finite element method, 3rd ed. McGraw-Hill, New York