zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pareto design of decoupled sliding-mode controllers for nonlinear systems based on a multiobjective genetic algorithm. (English) Zbl 1254.90214
Summary: We present a Pareto design of decoupled sliding-mode controllers based on a multiobjective genetic algorithm for several fourth-order coupled nonlinear systems. In order to achieve an optimum controller, at first, the decoupled sliding mode controller is applied to stablize the fourth-order coupled nonlinear systems at the equilibrium point. Then, the multiobjective genetic algorithm is applied to search the optimal coefficients of the decoupled sliding-mode control to improve the performance of the control system. Considered objective functions are the angle and distance errors. Finally, the simulation results implemented in the MATLAB software environment are presented for the inverted pendulum, ball and beam, and seesaw systems to assure the effectiveness of this technique.
90C29Multi-objective programming; goal programming
93D05Lyapunov and other classical stabilities of control systems