zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust function projective synchronization of two different chaotic systems with unknown parameters. (English) Zbl 1254.93076
Summary: This paper deals with the function projective synchronization problem of two different chaotic systems with unknown and perturbed parameters. The parameter perturbations are assumed to appear in both drive and response systems with perturbations about the nominal parameter values. A new robust function projective synchronization method is proposed, which is able to overcome random uncertainties of all model parameters. Corresponding numerical simulations are performed to verify and illustrate the analytical results.
MSC:
93B51Design techniques in systems theory
37N35Dynamical systems in control
37D45Strange attractors, chaotic dynamics
34D06Synchronization
34H10Chaos control (ODE)
93C15Control systems governed by ODE
93C73Perturbations in control systems
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Physical review letters 64, 821-824 (1990)
[2]Wu, X.; Li, J.; Chen, G.: Chaos in the fractional order unified system and its synchronization, Journal of the franklin institute 345, 392-401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[3]Grassi, G.: Propagation of projective synchronization in a series connection of chaotic systems, Journal of the franklin institute 347, 438-451 (2010) · Zbl 1185.93075 · doi:10.1016/j.jfranklin.2009.10.004
[4]Li, X.; Cao, J.: Adaptive synchronization for delayed neural networks with stochastic perturbation, Journal of the franklin institute 345, 779-791 (2008) · Zbl 1169.93350 · doi:10.1016/j.jfranklin.2008.04.012
[5]Zhou, Z.; Hu, C.; Chen, M.; He, M.: A robust APD synchronization scheme and its application to secure communication, Journal of the franklin institute 346, 808-817 (2009)
[6]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization of chaos oscillators, Physical review letters 76, 1804-1807 (1996)
[7]Rulkov, N. F.; Sushchik, M. M.; Tsimring, L. S.: Generalized synchronization of chaos in directionally coupled chaotic systems, Physical review E 51, 980-994 (1995)
[8]Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators, Physical review letters 78, 4193-4196 (1997)
[9]Hramov, A. E.; Koronovskii, A. A.: An approach to chaotic synchronization, Chaos 14, 603-610 (2004) · Zbl 1080.37029 · doi:10.1063/1.1775991
[10]Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems, Physical review letters 82, 3042-3045 (1999)
[11]Park, J. H.: Adaptive modified projective synchronization of a unified chaotic system with an uncertain parameter, Chaos, solitons fractals 34, 1552-1559 (2007)
[12]Park, J. H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, Journal of computational and applied mathematics 213, 288-293 (2008) · Zbl 1137.93035 · doi:10.1016/j.cam.2006.12.003
[13]Tang, X.; Lu, J.; Zhang, W.: The FPS of chaotic system using backstepping design, China journal of dynamics and control 5, 216-219 (2007)
[14]Du, H.; Zeng, Q.; Wang, C.; Ling, M.: Function projective synchronization in coupled chaotic systems, Nonlinear analysis: real world applications 11, 705-712 (2010) · Zbl 1181.37039 · doi:10.1016/j.nonrwa.2009.01.016
[15]Du, H.; Zeng, Q.; Wang, C.: A general method for function projective synchronization, International journal of innovative computing, information and control 5, 2239-2248 (2009)
[16]Zhang, R.; Yang, Y.; Xu, Z.; Hu, M.: Function projective synchronization in drive-response dynamical network, Physics letters A 374, 3025-3028 (2010)
[17]Wu, Z.; Fu, X.: Adaptive function projective synchronization of discrete chaotic systems with unknown parameters, Chinese physics letters 27, 050502 (2010)
[18]Park, J.: Further results on functional projective synchronization of Genesio-Tesi chaotic system, Modern physics letters B 23, 1889-1895 (2009) · Zbl 1168.37311 · doi:10.1142/S0217984909020059
[19]Chen, Y.; Li, X.: Function projective synchronization between two identical chaotic systems, International journal of modern physics C 18, 883-888 (2007) · Zbl 1139.37301 · doi:10.1142/S0129183107010607
[20]Chen, Y.; An, H. L.; Li, Z. B.: The function cascade synchronization approach with uncertain parameters or not for hyperchaotic systems, Applied mathematics and computation 197, 96-110 (2008) · Zbl 1136.93410 · doi:10.1016/j.amc.2007.07.036
[21]Luo, R. Z.: Adaptive function project synchronization of Rössler hyperchaotic system with uncertain parameters, Physics letters A 372, 3667-3671 (2008) · Zbl 1220.37025 · doi:10.1016/j.physleta.2008.02.035
[22]Du, H.; Zeng, Q.; Wang, C.: Function projective synchronization of different chaotic systems with uncertain parameters, Physics letters A 372, 5402-5410 (2008) · Zbl 1223.34077 · doi:10.1016/j.physleta.2008.06.036
[23]Shen, L.; Liu, W.; Ma, J.: Robust function projective synchronization of a class of uncertain chaotic systems, Chaos, solitons fractals 42, 1292-1296 (2009) · Zbl 1198.93019 · doi:10.1016/j.chaos.2009.03.073