zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. (English) Zbl 1255.26002
Summary: The fractional complex transform is suggested to convert a fractional differential equation with Jumarie’s modification of Riemann-Liouville derivative into its classical differential partner. Understanding the fractional complex transform and the chain rule for fractional calculus are elucidated geometrically.
MSC:
26A33Fractional derivatives and integrals (real functions)
34K37Functional-differential equations with fractional derivatives
34M25Formal solutions, transform techniques (ODE in the complex domain)
References:
[1]Li, Z. B.; He, J. H.: Math. comput. Appl., Math. comput. Appl. 15, 970 (2010)
[2]Li, Z. B.: Int. J. Nonlinear sci. Num., Int. J. Nonlinear sci. Num. 11, 335 (2010)
[3]Li, Z. B.; He, J. H.: Nonlinear sci. Lett. A, Nonlinear sci. Lett. A 2, 121 (2011)
[4]He, J. H.: Phys. lett. A, Phys. lett. A 375, 3362 (2011)
[5]Jafari, H.; Kadkhoda, N.; Tajadodi, H.: Int. J. Nonlinear sci. Num., Int. J. Nonlinear sci. Num. 11, 271 (2010)
[6]Golbabai, A.; Sayevand, K.: Nonlinear sci. Lett. A, Nonlinear sci. Lett. A 1, 147 (2010)
[7]He, J. H.: Comput. methods appl. Mech. engrg., Comput. methods appl. Mech. engrg. 167, 57 (1998)
[8]He, J. H.: Thermal sci., Thermal sci. 15, S1 (2011)
[9]He, J. H.: Thermal sci., Thermal sci. 15, S145 (2011)
[10]He, J. H.; Wu, G. C.; Austin, F.: Nonlinear sci. Lett. A, Nonlinear sci. Lett. A 1, 1 (2010)
[11]Guo, S.; Mei, L.: Phys. lett. A, Phys. lett. A 375, 309 (2011)
[12]Wu, G.; Lee, E. W. M.: Phys. lett. A, Phys. lett. A 374, 2506 (2010)
[13]Zhang, S.; Zong, Q. -A.; Liu, D.; Gao, Q.: Commun. fract. Calc., Commun. fract. Calc. 1, 48 (2010)
[14]Hristov, J.: Int. rev. Chem. eng., Int. rev. Chem. eng. 2, 555 (2010)
[15]Hristov, J.: Thermal sci., Thermal sci. 15, S5 (2011)
[16]Hristov, J.: Thermal sci., Thermal sci. 14, 291 (2010)
[17]Yang, X.: Prog. nonlinear sci., Prog. nonlinear sci. 4, 1 (2011)
[18]Gupta, P. K.: Nonlinear sci. Lett. B, Nonlinear sci. Lett. B 1, 123 (2011)
[19]Das, S.; Gupta, P. K.; Barat, S.: Nonlinear sci. Lett. B, Nonlinear sci. Lett. B 1, 129 (2011)
[20]Jafari, H.: Commun. fract. Calc., Commun. fract. Calc. 2, 9 (2011)
[21]Ganji, D. D.; Kachapi, S. H. H.: Prog. nonlinear sci., Prog. nonlinear sci. 2, 1 (2011)
[22]Ganji, D. D.; Kachapi, S. H. H.: Prog. nonlinear sci., Prog. nonlinear sci. 3, 1 (2011)
[23]Jumarie, G.: Appl. math. Lett., Appl. math. Lett. 23, 1444 (2010)
[24]Jumarie, G.: Int. J. Systems sci., Int. J. Systems sci. 6, 1113 (1993)
[25]Jumarie, G.: J. appl. Math. comput., J. appl. Math. comput. 24, 31 (2007)
[26]Jumarie, G.: Appl. math. Lett., Appl. math. Lett. 22, 1659 (2009)
[27]He, J. H.: Chaos solitons fractals, Chaos solitons fractals 36, 542 (2008)