zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Quasilinearization of the initial value problem for difference equations with “maxima”. (English) Zbl 1255.65229
Summary: The object of investigation of the paper is a special type of difference equations containing the maximum value of the unknown function over a past time interval. These equations are adequate models of real processes which present state depends significantly on their maximal value over a past time interval. An algorithm based on the quasilinearization method is suggested to solve approximately the initial value problem for the given difference equation. Every successive approximation of the unknown solution is the unique solution of an appropriately constructed initial value problem for a linear difference equation with “maxima,” and a formula for its explicit form is given. Also, each approximation is a lower/upper solution of the given mixed problem. It is proved the quadratic convergence of the successive approximations. The suggested algorithm is realized as a computer program, and it is applied to an example, illustrating the advantages of the suggested scheme.
MSC:
65Q10Numerical methods for difference equations
39A06Linear equations (difference equations)