zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Automated regularization parameter selection in multi-scale total variation models for image restoration. (English) Zbl 1255.68230
Summary: Multi-scale total variation models for image restoration are introduced. The models utilize a spatially dependent regularization parameter in order to enhance image regions containing details while still sufficiently smoothing homogeneous features. The fully automated adjustment strategy of the regularization parameter is based on local variance estimators. For robustness reasons, the decision on the acceptance or rejection of a local parameter value relies on a confidence interval technique based on the expected maximal local variance estimate. In order to improve the performance of the initial algorithm a generalized hierarchical decomposition of the restored image is used. The corresponding subproblems are solved by a superlinearly convergent algorithm based on Fenchel-duality and inexact semismooth Newton techniques. The paper ends by a report on numerical tests, a qualitative study of the proposed adjustment scheme and a comparison with popular total variation based restoration methods.
MSC:
68U10Image processing (computing aspects)
94A08Image processing (compression, reconstruction, etc.)
65J20Improperly posed problems; regularization (numerical methods in abstract spaces)
References:
[1]USC-SIPI image database. University of Southern California. http://sipi.usc.edu/services/database/Database.html
[2]Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 10, 1217–1229 (1994) · Zbl 0809.35151 · doi:10.1088/0266-5611/10/6/003
[3]Almansa, A., Ballester, C., Caselles, V., Haro, G.: A TV based restoration model with local constraints. J. Sci. Comput. 34(3), 209–236 (2008) · Zbl 1218.94007 · doi:10.1007/s10915-007-9160-x
[4]Andrews, H.C., Hunt, B.R.: Digital Image Restoration. Prentice Hall, New York (1977)
[5]Attouch, H., Buttazzo, G., Michaille, G.: Variational Analysis in Sobolev and BV Spaces. SIAM, Philadelphia (2005)
[6]Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Partial Differential Equations and the Calculus of Variations. Springer, New York (2002)
[7]Bertalmio, M., Caselles, V., Rougé, B., Solé, A.: TV based image restoration with local constraints. J. Sci. Comput. 19, 95–122 (2003) · Zbl 1034.49036 · doi:10.1023/A:1025391506181
[8]Bovik, A.: Handbook of Image and Video Processing. Academic Press, San Diego (2000)
[9]Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005) · Zbl 1108.94004 · doi:10.1137/040616024
[10]Chambolle, A.: An algorithm for total variation minimization and application. J. Math. Imaging Vis. 20, 89–97 (2004) · Zbl 02060336 · doi:10.1023/B:JMIV.0000011321.19549.88
[11]Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[12]Chang, Q., Chern, I.-L.: Acceleration methods for total variation-based image denoising. SIAM J. Appl. Math. 25, 982–994 (2003)
[13]Dobson, D.C., Vogel, C.R.: Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34, 1779–1791 (1997) · Zbl 0898.65034 · doi:10.1137/S003614299528701X
[14]Ekeland, I., Témam, R.: Convex Analysis and Variational Problems. Classics Appl. Math., vol. 28. SIAM, Philadelphia (1999)
[15]Facciolo, G., Almansa, A., Aujol, J.-F., Caselles, V.: Irregular to regular sampling, denoising and deconvolution. Multiscale Model. Simul. 7(4), 1574–1608 (2009) · Zbl 1185.68804 · doi:10.1137/080719443
[16]Galatsanos, N.P., Ketsaggelos, A.K.: Methods for choosing the regularization parameter and estimating the noise variance in image restoration and their relation. IEEE Trans. Image Process. 1, 322–336 (1992) · doi:10.1109/83.148606
[17]Gilboa, G., Sochen, N., Zeevi, Y.Y.: Texture preserving variational denoising using an adaptive fidelity term. In: Proceeding of the IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, Nice, France, pp. 137–144 (2003)
[18]Giusti, E.: Minimal Surfaces and Functions of Bounded Variation. Birkhäuser, Boston (1984)
[19]Gumbel, E.J.: Les valeurs extrêmes des distributions statistiques. Ann. Inst. Henri Poincaré 5(2), 115–158 (1935)
[20]Hintermüller, M., Kunisch, K.: Total bounded variation regularization as bilaterally constrained optimization problem. SIAM J. Appl. Math. 64, 1311–1333 (2004) · Zbl 1055.94504 · doi:10.1137/S0036139903422784
[21]Hintermüller, M., Stadler, G.: An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J. Sci. Comput. 28(1), 1–23 (2006) · Zbl 1136.94302 · doi:10.1137/040613263
[22]Mood, A.: Introduction to the Theory of Statistics. McGraw-Hill, New York (1974)
[23]Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation-based image restoration. Multiscale Model. Simul. 4, 460–489 (2005) · Zbl 1090.94003 · doi:10.1137/040605412
[24]Papoulis, A.: Probability, Random Variables, Stochastic Processes. McGraw-Hill, New York (1991)
[25]Rudin, L.: MTV-multiscale total variation principle for a PDE-based solution to nonsmooth ill-posed problem. Technical report, Cognitech, Inc. Talk presented at the Workshop on Mathematical Methods in Computer Vision, University of Minnesota, 1995
[26]Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[27]Rudin, W.: Functional Analysis. TATA McGraw-Hill Publishing Company LTD., Noida (1974)
[28]Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)
[29]Strong, D., Aujol, J.-F., Chan, T.: Scale recognition, regularization parameter selection, and Meyer’s G norm in total variation regularization. Technical report, UCLA, 2005
[30]Strong, D., Chan, T.: Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. Technical report, UCLA, 1996
[31]Strong, D., Chan, T.: Edge-preserving and scale-dependent properties of total variation regularization. Inverse Probl. 19, 165–187 (2003)
[32]Tadmor, E., Nezzar, S., Vese, L.: A multiscale image representation using hierarchical (BV,L 2) decompositions. Multiscale Model. Simul. 2, 554–579 (2004) · Zbl 1146.68472 · doi:10.1137/030600448
[33]Tadmor, E., Nezzar, S., Vese, L.: Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation. Commun. Math. Sci. 6, 1–26 (2008) · doi:10.4310/CMS.2008.v6.n1.a1
[34]Vogel, C.R.: Computational Methods for Inverse Problems. Frontiers Appl. Math., vol. 23. SIAM, Philadelphia (2002)
[35]Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004) · Zbl 05453404 · doi:10.1109/TIP.2003.819861