zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Particle motion in a photon gas: friction matters. (English) Zbl 1255.83026
Summary: The motion of a particle in the Tolman metric generated by a photon gas source is discussed. Both the case of geodesic motion and motion with nonzero friction, due to photon scattering effects, are analyzed. In the Minkowski limit, the particle moves along a straight line segment with a decelerated motion, reaching the endpoint at zero speed. The curved case shows a qualitatively different behavior; the geodesic motion consists of periodic orbits, confined within a specific radial interval. Under the effect of frictional drag, this radial interval closes up in time and in all our numerical simulations the particle ends up in the singularity at the center.
83C10Equations of motion
85A05Galactic and stellar dynamics
[1]Rovelli C.: Phys. Rev. D 65, 044017 (2002) · doi:10.1103/PhysRevD.65.044017
[2]Hofmann-Wellenhof B., Lichtenegger H., Collins J.: Global Positioning System Theory and Practice. Springer, New York (1993)
[3]Zwanzig R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)
[4]Poynting J.H.: Philos. Trans. R. Soc. Lond. A 202, 525 (1904) · Zbl 02655373 · doi:10.1098/rsta.1904.0012
[5]Robertson H.P.: MNRAS 97, 423 (1937)
[6]Bini D., Jantzen R.T., Stella L.: Cl. Quantum Grav. 26, 055009 (2009) · Zbl 1160.83003 · doi:10.1088/0264-9381/26/5/055009
[7]Bini D., Geralico A., Jantzen R.T., Semerák O., Stella L.: Cl. Quantum Grav. 28, 035008 (2011) · Zbl 1210.83007 · doi:10.1088/0264-9381/28/3/035008
[8]Bini D., Gregoris D., Succi S.: Europhys. Lett. 97, 40007 (2012) · doi:10.1209/0295-5075/97/40007
[9]Bini D., Succi S.: Europhys. Lett. 82, 34003 (2008) · doi:10.1209/0295-5075/82/34003
[10]Bluhm R., Kostelecky V.A.: Phys. Rev. D 71, 065008 (2005) · doi:10.1103/PhysRevD.71.065008
[11]Stephani H., Kramer D., MacCallum M., Hoensealers C., Herlt E.: Exact Solutions of Einstein’s Field Equations. Cambridge University Press, Cambridge (2002)
[12]Tolman R.C.: Phys. Rev. D 55, 364 (1939) · doi:10.1103/PhysRev.55.364
[13]Misner C.W., Thorne K.S., Wheeler J.A.: Gravitation. Freeman, USA (1973)
[14]Bondi H.: MNRAS 107, 410 (1947)
[15]Klein O.: Rev. Mod. Phys. 21, 531 (1949) · Zbl 0036.42701 · doi:10.1103/RevModPhys.21.531