zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Design an adaptive sliding mode controller for drive-response synchronization of two different uncertain fractional-order chaotic systems with fully unknown parameters. (English) Zbl 1255.93038
Summary: In this paper, design an Adaptive Sliding Mode Controller (ASMC) for master-slave synchronization of two different fractional-order chaotic systems with fully unknown parameters, uncertainties and external disturbances is proposed. The bounds of the unknown parameters, uncertainties and external disturbances are assumed to be unknown in advance. Appropriate adaptive laws are designed to tackle the unknown parameters, uncertainties and external disturbances. Based on the adaptive laws, the ASMC is constructed in order to ensure the occurrence of the sliding motion and synchronization of two different fractional-order systems. The analytical conditions for synchronization of the systems are obtained by utilizing Laplace transform. Finally, numerical examples are provided to illustrate the effectiveness of the proposed ASMC scheme.
MSC:
93B12Variable structure systems
93C40Adaptive control systems
34H10Chaos control (ODE)
References:
[1]Tseng, C. C.; Pei, S. C.; Hsia, S. C.: Computation of fractional derivatives using Fourier transform and digital FIR differentiator, Signal processing 80, 151-159 (2000) · Zbl 1037.94524 · doi:10.1016/S0165-1684(99)00118-8
[2]Ostalczyk, P.: Fundamental properties of the fractional-order discrete-time integrator, Signal processing 83, 2367-2376 (2003) · Zbl 1145.94368 · doi:10.1016/S0165-1684(03)00189-0
[3]Anastassiou, G. A.: Principles of delta fractional calculus on time scales and inequalities, Mathematical and computer modelling 52, 556-566 (2010) · Zbl 1201.26001 · doi:10.1016/j.mcm.2010.03.055
[4]Agarwal, R. P.; Andrade, B.; Cuevas, C.: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations, Nonlinear analysis: real world applications 11, 3532-3554 (2010)
[5]Sheng, H.; Li, Y.; Chen, Y. Q.: Application of numerical inverse Laplace transform algorithms in fractional calculus, Journal of the franklin institute 348, 315-330 (2011) · Zbl 1210.65201 · doi:10.1016/j.jfranklin.2010.11.009
[6]Yan, Z.: Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay, Journal of the franklin institute 348, 2156-2173 (2011) · Zbl 1231.93018
[7]Chen, Y. Q.; Ahn, H. S.; Xue, D.: Robust controllability of interval fractional order linear time invariant systems, Signal processing 86, 2794-2802 (2006) · Zbl 1172.94386 · doi:10.1016/j.sigpro.2006.02.021
[8]Ahn, H. S.; Chen, Y. Q.: Necessary and sufficient stability condition of fractional-order interval linear systems, Automatica 44, 2985-2988 (2008) · Zbl 1152.93455 · doi:10.1016/j.automatica.2008.07.003
[9]Luo, Y.; Chen, Y. Q.: Fractional order [proportional derivative] controller for a class of fractional order systems, Automatica 45, 2446-2450 (2009) · Zbl 1183.93053 · doi:10.1016/j.automatica.2009.06.022
[10]Moornani, K. A.; Haeri, M.: On robust stability of LTI fractional-order delay systems of retarded and neutral type, Automatica 46, 362-368 (2010) · Zbl 1205.93118 · doi:10.1016/j.automatica.2009.11.006
[11]Lu, J. G.: Nonlinear observer design to synchronize fractional-orderchaotic systems via a scalar transmitted signal, Physica A 359, 107-118 (2006)
[12]Asheghan, M. M.; Beheshti, M. T. H.; Tavazoei, M. S.: Robust synchronization of perturbed Chen’s fractional-order chaotic systems, Communications in nonlinear science and numerical simulation 16, 1044-1051 (2011) · Zbl 1221.34007 · doi:10.1016/j.cnsns.2010.05.024
[13]Dadras, S.; Momeni, H. R.: Control of a fractional-order economical system via sliding mode, Physica A 389, 2434-2442 (2010)
[14]Yin, C.; Zhong, S.; Chen, W.: Design of sliding mode controller for a class of fractional-order chaotic systems, Communications in nonlinear science and numerical simulation 17, 356-366 (2012)
[15]Deng, W. H.; Li, C. P.: Chaos synchronization of the fractional L system, Physica A 353, 61-72 (2005)
[16]Yin, C.; Zhong, S.; Chen, W.: Design PD controller for master–slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities, Communications in nonlinear science and numerical simulation 16, 1632-1639 (2011) · Zbl 1221.93112 · doi:10.1016/j.cnsns.2010.05.031
[17]Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Communications in nonlinear science and numerical simulation 16, 2853-2868 (2011) · Zbl 1221.93131 · doi:10.1016/j.cnsns.2010.09.038
[18]Peng, G.; Jiang, Y.; Chen, F.: Generalized projective synchronization of fractional order chaotic systems, Physica A 387, 3738-3746 (2008)
[19]Shahiri, M.; Ghaderi, R.; Ranjbar, A. N.; Hosseinnia, S. H.; Momani, S.: Chaotic fractional-order coullet system: synchronization and control approach, Communications in nonlinear science and numerical simulation 15, 665-674 (2010) · Zbl 1221.37222 · doi:10.1016/j.cnsns.2009.05.054
[20]Bhalekar, S.; Daftardar-Gejji, V.: Synchronization of different fractional order chaotic systems using active control, Communications in nonlinear science and numerical simulation 15, 3536-3546 (2010) · Zbl 1222.94031 · doi:10.1016/j.cnsns.2009.12.016
[21]Liao, Z.; Peng, C.; Li, W.; Wang, Y.: Robust stability analysis for a class of fractional order systems with uncertain parameters, Journal of the franklin institute 348, 1101-1113 (2011)
[22]Pan, L.; Zhou, W.; Zhou, L.; Sun, K.: Chaos synchronization between two different fractional-order hyperchaotic systems, Communications in nonlinear science and numerical simulation 16, 2628-2640 (2011) · Zbl 1221.37220 · doi:10.1016/j.cnsns.2010.09.016
[23]Matouk, A. E.: Chaos, feedback control and synchronization of a fractional-order modified autonomous van der Pol-Duffing circuit, Communications in nonlinear science and numerical simulation 16, 975-986 (2011) · Zbl 1221.93227 · doi:10.1016/j.cnsns.2010.04.027
[24]Zhou, P.; Zhu, W.: Function projective synchronization for fractional-order chaotic systems, Nonlinear analysis: real world applications 12, 811-816 (2011) · Zbl 1209.34065 · doi:10.1016/j.nonrwa.2010.08.008
[25]Tavazoei, M. S.; Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller, Physica A 387, 57-70 (2008)
[26]Barambones, O.; Alkorta, P.; Garrido, A. J.; Garrido, I.; Maseda, F. J.: An adaptive sliding mode control scheme for induction motor drives, International journal of circuits, systems and signal processing 1, 73-77 (2007)
[27]O. Barambones, A.J. Garrido, F.J. Maseda, P. Alkorta, An adaptive sliding mode control law for induction motors using field oriented control theory, in: Proceedings of the IEEE International Conference on Control Applications, 2006, pp. 1008–1013.
[28]Sadati, N.; Ghadami, R.: Adaptive multi-model sliding mode control of robotic manipulators using soft computing, Neurocomputing 71, 2702-2710 (2008)
[29]Roopaei, M.; Sahraei, B. R.; Lin, T. C.: Adaptive sliding mode control in a novel class of chaotic systems, Communications in nonlinear science and numerical simulation 15, 4158-4170 (2010) · Zbl 1222.93124 · doi:10.1016/j.cnsns.2010.02.017
[30]Hosseinnia, S. H.; Ghaderi, R.; Ranjbar, A. N.; Mahmoudian, M.; Momani, S.: Sliding mode synchronization of an uncertain fractional order chaotic system, Computers mathematics with applications 59, 1637-1643 (2010) · Zbl 1189.34011 · doi:10.1016/j.camwa.2009.08.021
[31]Dadras, S.; Momeni, H. R.: Adaptive sliding mode control of chaotic dynamical systems with application to synchronization, Mathematics and computers simulation 80, 2245-2257 (2010) · Zbl 1203.65279 · doi:10.1016/j.matcom.2010.04.005
[32]Aghababa, M. P.; Khanmohammadi, S.; Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Applied mathematical modelling 35, 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[33]Zhang, R.; Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear dynamics 66, 831-837 (2011)
[34]Aghababa, M. P.; Akbari, M. E.: A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances, Applied mathematics and computation 218, 5757-5768 (2012)
[35]Aghababa, M. P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Communications in nonlinear science and numerical simulation 17, 2670-2681 (2012)
[36]Aghababa, M. P.: Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique, Nonlinear dynamics 69, 247-261 (2012)
[37]Monje, C. A.; Chen, Y.; Vinagre, B. M.; Xue, D.; Feliu, V.: Fractional-order systems and controls, (2010)
[38]Podlubny, I.: Fractional differential equations, (1999)
[39]Khalil, H. -K.: Nonlinear system, (2002) · Zbl 1003.34002
[40]Slotine, J. -J.E.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036