zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamics and synchronization of new hyperchaotic complex Lorenz system. (English) Zbl 1255.93102
Summary: The aim of this paper is to introduce a new hyperchaotic complex Lorenz system. This hyperchaotic complex system is constructed by adding a linear controller to the second equation of the chaotic complex Lorenz system. The new system is a 7-dimensional continuous real autonomous hyperchaotic system. This system has hyperchaotic attractors and quasi-periodic solutions with three zero Lyapunov exponents, while the chaotic attractors exist for all the parameters values of this system with two zero Lyapunov exponents. The fractional Lyapunov dimension of the hyperchaotic attractors of this system is calculated. Bifurcation diagrams are used to demonstrate chaotic and hyperchaotic behaviors of new system. The active control method based on Lyapunov stability analysis is used to study synchronization of this system. Numerical simulations are implemented to verify the results of these investigations.
93D05Lyapunov and other classical stabilities of control systems
37N35Dynamical systems in control