zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a system of difference equations with period two coefficients. (English) Zbl 1256.39008

Considered is the following system of difference equations

x n+1 =a n x n-1 b n y n x n-1 +c n ,y n+1 =α n y n-1 β n x n y n-1 +γ n ,n 0 ,

where the sequences a n , b n , c n , α n , β n , γ n are two-periodic and the initial values x -1 , x 0 , y -1 , y 0 are real numbers. For the all possible cases, the author derives explicit formulae for all well-defined solutions. These results extend those in his paper [Appl. Math. Comput. 218, No. 14, 7649–7654 (2012; Zbl 1243.39011)].

MSC:
39A20Generalized difference equations
39A23Periodic solutions (difference equations)
References:
[1]Aloqeili, M.: Global stability of a rational symmetric difference equation, Appl. math. Comput. 215, No. 3, 950-953 (2009) · Zbl 1177.39019 · doi:10.1016/j.amc.2009.06.026
[2]Berenhaut, K.; Stević, S.: The behaviour of the positive solutions of the difference equation xn=A+(xn - 2/xn - 1)p, J. differ. Equat. appl. 12, No. 9, 909-918 (2006) · Zbl 1111.39003 · doi:10.1080/10236190600836377
[3]Berg, L.; Stević, S.: Periodicity of some classes of holomorphic difference equations, J. differ. Equat. appl. 12, No. 8, 827-835 (2006) · Zbl 1103.39004 · doi:10.1080/10236190600761575
[4]Berg, L.; Stević, S.: Linear difference equations mod 2 with applications to nonlinear difference equations, J. differ. Equat. appl. 14, No. 7, 693-704 (2008) · Zbl 1156.39003 · doi:10.1080/10236190701754891
[5]Berg, L.; Stević, S.: On the asymptotics of the difference equation yn(1+yn-1·yn-k+1)=yn - k, J. differ. Equat. appl. 17, No. 4, 577-586 (2011) · Zbl 1220.39011 · doi:10.1080/10236190903203820
[6]Iričanin, B.: Global stability of some classes of higher-order nonlinear difference equations, Appl. math. Comput. 216, No. 4, 1325-1328 (2010) · Zbl 1194.39012 · doi:10.1016/j.amc.2010.02.027
[7]Iričanin, B.: The boundedness character of two stevic-type fourth-order difference equations, Appl. math. Comput. 217, No. 5, 1857-1862 (2010) · Zbl 1219.39006 · doi:10.1016/j.amc.2010.06.037
[8]Iričanin, B.; Stević, S.: Some systems of nonlinear difference equations of higher order with periodic solutions, Dynam. contin. Discrete impuls. Syst. 13 a, No. 3 – 4, 499-508 (2006) · Zbl 1098.39003
[9]Iričanin, B.; Stević, S.: Eventually constant solutions of a rational difference equation, Appl. math. Comput. 215, 854-856 (2009) · Zbl 1178.39012 · doi:10.1016/j.amc.2009.05.044
[10]Iričanin, B. D.; Stević, S.: On a class of third-order nonlinear difference equations, Appl. math. Comput. 213, 479-483 (2009) · Zbl 1178.39011 · doi:10.1016/j.amc.2009.03.039
[11]Karakostas, G. L.: Asymptotic 2-periodic difference equations with diagonally self-invertible responces, J. differ. Equat. appl. 6, 329-335 (2000) · Zbl 0963.39020 · doi:10.1080/10236190008808232
[12]Kent, C. M.: Convergence of solutions in a nonhyperbolic case, Nonlinear anal. 47, 4651-4665 (2001) · Zbl 1042.39507 · doi:10.1016/S0362-546X(01)00578-8
[13]Kent, C. M.; Kosmala, W.; Radin, M. A.; Stević, S.: Solutions of the difference equation xn+1=xnxn - 1 - 1, Abstr. appl. Anal. 2010, 13 (2010) · Zbl 1198.39017 · doi:10.1155/2010/469683
[14]Kent, C. M.; Kosmala, W.; Stević, S.: On the difference equation xn+1=xnxn - 2 - 1, Abstr. appl. Anal. vol. 2011, 15 (2011)
[15]Papaschinopoulos, G.; Schinas, C. J.: On the behavior of the solutions of a system of two nonlinear difference equations, Comm. appl. Nonlinear anal. 5, No. 2, 47-59 (1998) · Zbl 1110.39301
[16]Papaschinopoulos, G.; Schinas, C. J.: Invariants for systems of two nonlinear difference equations, Diff. equat. Dynam. syst. 7, No. 2, 181-196 (1999) · Zbl 0978.39014
[17]Papaschinopoulos, G.; Schinas, C. J.: Invariants and oscillation for systems of two nonlinear difference equations, Nonlinear anal. TMA 46, No. 7, 967-978 (2001) · Zbl 1003.39007 · doi:10.1016/S0362-546X(00)00146-2
[18]Papaschinopoulos, G.; Schinas, C. J.; Stefanidou, G.: On the nonautonomous difference equation xn+1=An+(xn-1p/xnq), Appl. math. Comput. 217, 55735580 (2011)
[19]Papaschinopoulos, G.; Stefanidou, G.: Trichotomy of a system of two difference equations, J. math. Anal. appl. 289, 216-230 (2004) · Zbl 1045.39008 · doi:10.1016/j.jmaa.2003.09.046
[20]Stević, S.: On the recursive sequence xn+1=xn - 1/g(xn), Taiwanese J. Math. 6, No. 3, 405-414 (2002) · Zbl 1019.39010
[21]Stević, S.: More on a rotional recurrence relation, Appl. math. E-notes 4, 80-85 (2004) · Zbl 1069.39024 · doi:emis:journals/AMEN/2004/2004.htm
[22]Stević, S.: Global stability and asymptotics of some classes of rational difference equations, J. math. Anal. appl. 316, 60-68 (2006) · Zbl 1090.39009 · doi:10.1016/j.jmaa.2005.04.077
[23]Stević, S.: On positive solutions of a (k+1)th order difference equation, Appl. math. Lett. 19, No. 5, 427-431 (2006) · Zbl 1095.39010 · doi:10.1016/j.aml.2005.05.014
[24]Stević, S.: A short proof of the cushing – henson conjecture, Discrete dyn. Nat. soc. 2006, 5 (2006) · Zbl 1149.39300 · doi:10.1155/DDNS/2006/37264
[25]Stević, S.: Existence of nontrivial solutions of a rational difference equation, Appl. math. Lett. 20, 28-31 (2007) · Zbl 1131.39009 · doi:10.1016/j.aml.2006.03.002
[26]Stević, S.: Nontrivial solutions of a higher-order rational difference equation, Math. notes 84, No. 5-6, 718-724 (2008) · Zbl 1219.39007 · doi:10.1134/S0001434608110138
[27]Stević, S.: On the recursive sequence xn+1=maxc,xnp/xn-1p, Appl. math. Lett. 21, No. 8, 791-796 (2008)
[28]Stević, S.: Boundedness character of a class of difference equations, Nonlinear anal. TMA 70, 839-848 (2009) · Zbl 1162.39011 · doi:10.1016/j.na.2008.01.014
[29]Stević, S.: Global stability of a difference equation with maximum, Appl. math. Comput. 210, 525-529 (2009) · Zbl 1167.39007 · doi:10.1016/j.amc.2009.01.050
[30]Stević, S.: Global stability of a MAX-type equation, Appl. math. Comput. 216, 354-356 (2010) · Zbl 1193.39009 · doi:10.1016/j.amc.2010.01.020
[31]Stević, S.: Global stability of some symmetric difference equations, Appl. math. Comput. 216, 179-186 (2010) · Zbl 1193.39008 · doi:10.1016/j.amc.2010.01.029
[32]Stević, S.: On a generalized MAX-type difference equation from automatic control theory, Nonlinear anal. TMA 72, 1841-1849 (2010) · Zbl 1194.39007 · doi:10.1016/j.na.2009.09.025
[33]Stević, S.: Periodicity of MAX difference equations, Util. math. 83, 69-71 (2010)
[34]Stević, S.: On a nonlinear generalized MAX-type difference equation, J. math. Anal. appl. 376, 317-328 (2011) · Zbl 1208.39014 · doi:10.1016/j.jmaa.2010.11.041
[35]Stević, S.: Periodicity of a class of nonautonomous MAX-type difference equations, Appl. math. Comput. 217, 9562-9566 (2011) · Zbl 1225.39018 · doi:10.1016/j.amc.2011.04.022
[36]Stević, S.: On the difference equation xn=xn - 2/(bn+cnxn - 1xn - 2), Appl. math. Comput. 218, No. 8, 4507-4513 (2011)
[37]Stević, S.: On a system of difference equations, Appl. math. Comput. 218, No. 7, 3372-3378 (2011)