zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A perturbed projection algorithm with inertial technique for split feasibility problem. (English) Zbl 1256.65052
Summary: This paper deals with the split feasibility problem that requires to find a point closest to a closed convex set in one space such that its image under a linear transformation will be closest to another closed convex set in the image space. By combining perturbed strategy with inertial technique, we construct an inertial perturbed projection algorithm for solving the split feasibility problem. Under some suitable conditions, we show the asymptotic convergence. The results improve and extend the algorithms presented by C. Byrne [Inverse Probl. 18, No. 2, 441–453 (2002; Zbl 0996.65048)] and by J. Zhao and Q. Yang [Inverse Probl. 21, No. 5, 1791–1799 (2005; Zbl 1080.65035)] and the related convergence theorem.
MSC:
65K05Mathematical programming (numerical methods)
90C25Convex programming