zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of sampled-data coupled harmonic oscillators with control inputs missing. (English) Zbl 1256.93064
Summary: This paper is concerned with the synchronization problem of sampled-data coupled harmonic oscillators with control inputs missing. A distributed algorithm for synchronization in undirected networks of coupled harmonic oscillators is proposed based on the sampled-data measurement with controller failures. Some generic criteria for such algorithm over, respectively, undirected fixed and switching network topologies are derived analytically. Compared with some existing works, a distinctive feature of this work is to solve synchronization problems in undirected networks even if each oscillator intermittently exchanges the velocity information with its neighbors in terms of sampled-data setting only at discrete moments. Subsequently, numerical examples illustrate and visualize the effectiveness and feasibility of the theoretical results.
93C57Sampled-data control systems
93B40Computational methods in systems theory
[1]Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[2]Fax, J.; Murray, R.: Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control 49, No. 9, 1465-1476 (2004)
[3]Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and theory, IEEE transactions on automatic control 51, No. 3, 401-420 (2006)
[4]Xie, G.; Wang, L.: Consensus control for a class of networks of dynamic agents, International journal of robust and nonlinear control 17, No. 10–11, 941-959 (2007)
[5]Chen, T.; Liu, X.; Lu, W.: Pinning complex networks by a single controller, IEEE transactions on circuits and systems I: Regular papers 54, No. 6, 1317-1326 (2007)
[6]Nair, S.; Leonard, N.: Stable synchronization of mechanical system networks, SIAM journal on control and optimization 47, No. 2, 661-683 (2008) · Zbl 1158.70013 · doi:10.1137/050646639
[7]Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008)
[8]Song, Q.; Cao, J.; Yu, W.: Second-order leader-following consensus of nonlinear multi-agent systems via pinning control, Systems control letters 59, No. 9, 553-562 (2010) · Zbl 1213.37131 · doi:10.1016/j.sysconle.2010.06.016
[9]Yu, W.; Chen, G.; Cao, M.: Some necessary and suffient conditions for second-order consensus in multi-agent dynamical systems, Automatica 46, No. 6, 1089-1095 (2010) · Zbl 1192.93019 · doi:10.1016/j.automatica.2010.03.006
[10]Yu, W.; Chen, G.; Cao, W.; Kurths, J.: Second-order consensus for multiagent systems with directed topologies and nonlinear dynamics, IEEE transactions on systems, man, and cybernetics, part B: cybernetics 40, No. 3, 881-891 (2010)
[11]Qin, J.; Gao, H.; Zheng, W.: Second-order consensus for multi-agent systems with switching topology and communication delay, Systems control letters 60, No. 6, 390-397 (2011) · Zbl 1225.93020 · doi:10.1016/j.sysconle.2011.03.004
[12]Wu, Q.; Zhou, J.; Xiang, L.: Impulsive consensus seeking in directed networks of multi-agent systems with communication time delays, International journal of systems science 43, No. 8, 1479-1491 (2012)
[13]Zhou, J.; Wu, Q.; Xiang, L.: Pinning complex delayed dynamical networks by a single impulsive controller, IEEE transactions on circuits and systems I: Regular papers 58, No. 12, 2882-2893 (2011)
[14]Ren, W.; Cao, Y.: Distributed coordination of multi-agent networks, (2011)
[15]Wang, L.; Wang, X.: New conditions for synchronization in dynamical communication networks, Systems control letters 60, No. 4, 219-225 (2011) · Zbl 1216.93009 · doi:10.1016/j.sysconle.2010.12.006
[16]Ballard, L.; Cao, Y.; Ren, W.: Distributed discrete-time coupled harmonic oscillators with application to synchronised motion coordination, IET control theory applications 4, No. 5, 806-816 (2010)
[17]Ren, W.: Synchronization of coupled harmonic oscillators with local interaction, Automatica 44, No. 12, 3195-3200 (2008) · Zbl 1153.93421 · doi:10.1016/j.automatica.2008.05.027
[18]Su, H.; Wang, X.; Lin, Z.: Synchronization of coupled harmonic oscillators in a dynamic proximity network, Automatica 45, No. 10, 2286-2291 (2009) · Zbl 1179.93102 · doi:10.1016/j.automatica.2009.05.026
[19]C. Cai, S.E. Tuna, Synchronization of nonlinearly coupled harmonic oscillators. in: Proceedings of American Control Conference 2010, pp. 1767–1771.
[20]Cheng, S.; Ji, J.; Zhou, J.: Infinite-time and finite-time synchronization of coupled harmonic oscillators, Physica scripta 84, No. 3, 035006 (2011)
[21]T. Hayakawa, T. Matsuzawa, S. Hara, Formation control of multi-agent systems with sampled information, in: Proceedings of the 45th IEEE Conference on Decision Control, 2006, pp. 4333–4338.
[22]G. Xie, H. Liu, L. Wang, Y. Jia, Consensus in networked multi-agent systems via sampled control: switching topologies case, in: Proceedings of American Control Conference, 2009, pp. 4525–4530.
[23]Gao, Y.; Wang, L.; Xie, G.; Wu, B.: Consensus of multi-agent systems based on sampled-data control, International journal of control 82, No. 12, 2193-2205 (2009) · Zbl 1178.93091 · doi:10.1080/00207170902948035
[24]Gao, Y.; Wang, L.: Sampled-data based consensus of continuous-time multi-agent systems with time-varying topology, IEEE transactions on automatic control 56, No. 5, 1226-1231 (2011)
[25]Yu, W.; Zheng, W.; Chen, G.; Ren, W.; Cao, J.: Second-order consensus in multi-agent dynamical systems with sampled position data, Automatica 47, No. 7, 1496-1503 (2011) · Zbl 1220.93005 · doi:10.1016/j.automatica.2011.02.027
[26]Zhang, Y.; Tian, Y.: Consensus of data-sampled multi-agent systems with random communication delay and packet loss, IEEE transactions on automatic control 55, No. 2, 939-943 (2010)
[27]Zhang, W.; Yu, L.: Stabilization of sampled-data control systems with control inputs missing, IEEE transactions on automatic control 55, No. 2, 447-452 (2010)
[28]Zochowski, M.: Intermittent dynamical control, Physica D 145, No. 3–4, 181-190 (2000)
[29]Huang, T.; Li, C.; Liu, X.: Synchronization of chaotic systems with delay using intermittent linear state feedback, Chaos 18, 033122 (2008)
[30]Xia, W.; Cao, J.: Pinning synchronization of delayed dynamical networks via periodically intermittent control, Chaos 19, 013120 (2009)
[31]G. Wen, Z. Duan, G. Chen, W. Yu, Second-order consensus for nonlinear multi-agent systems with intermittent measurements, in: Proceedings of the 30th Chinese Control and Decision Conference, 2011, pp. 3710–3714.
[32]Sun, X.; Liu, G.; Rees, D.; Wang, W.: Stability of systems with controller failure and time-varying delay, IEEE transactions on automatic control 53, No. 10, 2391-2396 (2008)
[33]Liu, X.; Chen, T.: Cluster synchronization in directed networks via intermittent pinning control, IEEE transactions on neural networks 22, No. 7, 1009-1020 (2011)
[34]Clarke, F. H.; Ledyave, Y. S.; Sontag, E. D.: Asymptotic controllability implies feedback stabilization, IEEE transactions on automatic control 42, No. 10, 1394-1407 (1997) · Zbl 0892.93053 · doi:10.1109/9.633828
[35]Cortes, J.: Discontinuous dynamical systems, IEEE control systems magazine 28, No. 3, 36-73 (2008)
[36]R.A. Horn, C.R. Johnson, Matrix Analysis. Cambridge, 1985.