zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. (English) Zbl 1257.35146
Summary: We consider the Cauchy problem for the incompressible Navier-Stokes equations in 3 , and provide two new regularity criteria involving only two entries of the Jacobian matrix of the velocity field.
MSC:
35Q30Stokes and Navier-Stokes equations
76D03Existence, uniqueness, and regularity theory
76D05Navier-Stokes equations (fluid dynamics)
References:
[1]Beirão da Veiga, H.: A new regularity class for the Navier-Stokes equations in R n . Chin. Ann. Math., Ser. B 16, 407–412 (1995)
[2]Beirão da Veiga, H., Berselli, L.C.: On the regularizing effect of the vorticity direction in incompressible viscous flows. Differ. Integral Equ. 15, 345–356 (2002)
[3]Caffarelli, L., Kohn, R., Nirenberg, L.: Partial regularity of suitable weak solutions of the Navier-Stokes equations. Commun. Pure Appl. Math. 35, 771–831 (1982) · Zbl 0509.35067 · doi:10.1002/cpa.3160350604
[4]Cao, C.S.: Sufficient conditions for the regularity to the 3D Navier-Stokes equations. Discrete Contin. Dyn. Syst. 26, 1141–1151 (2010) · Zbl 1186.35136 · doi:10.3934/dcds.2010.26.1141
[5]Cao, C.S., Titi, E.S.: Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. arXiv:1005.4463 [math.AP], 25 May 2010
[6]Cao, C.S., Titi, E.S.: Regularity criteria for the three-dimensional Navier-Stokes equations. Indiana Univ. Math. J. 57, 2643–2661 (2008) · Zbl 1159.35053 · doi:10.1512/iumj.2008.57.3719
[7]Constantin, P., Fefferman, C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42, 775–789 (1993) · Zbl 0837.35113 · doi:10.1512/iumj.1993.42.42034
[8]Escauriaza, L., Seregin, G., Šverák, V.: Backward uniqueness for parabolic equations. Arch. Ration. Mech. Anal. 169, 147–157 (2003) · Zbl 1039.35052 · doi:10.1007/s00205-003-0263-8
[9]Evans, L.C.: Partial Differential Equations. Am. Math. Soc., Providence (1998)
[10]Fan, J.S., Jiang, S., Ni, G.X.: On regularity criteria for the n-dimensional Navier-Stokes equations in terms of the pressure. J. Differ. Equ. 244, 2963–2979 (2008) · Zbl 1143.35081 · doi:10.1016/j.jde.2008.02.030
[11]Hopf, E.: Üer die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951) · Zbl 0042.10604 · doi:10.1002/mana.3210040121
[12]Kim, J.M.: On regularity criteria of the Navier-Stokes equations in bounded domains. J. Math. Phys. 51, 053102 (2010)
[13]Kukavica, I., Ziane, M.: Navier-Stokes equations with regularity in one direction. J. Math. Phys. 48, 065203 (2007) · Zbl 1144.81373 · doi:10.1063/1.2395919
[14]Kukavica, I., Ziane, M.: One component regularity for the Navier-Stokes equations. Nonlinearity 19, 453–469 (2006) · Zbl 1149.35069 · doi:10.1088/0951-7715/19/2/012
[15]Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934) · Zbl 02539174 · doi:10.1007/BF02547354
[16]Neustupa, J., Novotný, A., Penel, P.: An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity. Topics in Mathematical Fluid Mechanics, Quaderni di Matematica, Dept. Math., Seconda University, Napoli, Caserta, vol. 10, pp. 163–183 (2002): see also, A remark to interior regularity of a suitable weak solution to the Navier-Stokes equations, CIM Preprint No. 25, 1999
[17]Neustupa, J., Penel, P.: Anisotropic and geometric criteria for interior regularity of weak solutions to the 3D Navier-Stokes equations. In: Neustupa, J., Penel, P. (eds.) Mathematical Fluid Mechanics (Recent Results and Open Problems). Advances in Mathematical Fluid Mechanics, pp. 239–267. Birkhäuser, Basel-Boston-Berlin (2001)
[18]Penel, P., Pokorný, M.: On anisotropic regularity criteria for the solutions to 3D Navier-Stokes equations. J. Math. Fluid Mech. doi: 10.1007/s00021-010-0038-6
[19]Penel, P., Pokorný, M.: Some new regularity criteria for the Navier-Stokes equations containing the gradient of velocity. Appl. Math. 49, 483–493 (2004) · Zbl 1099.35101 · doi:10.1023/B:APOM.0000048124.64244.7e
[20]Prodi, G.: Un teorema di unicitá per le equazioni di Navier-Stokes. Ann. Mat. Pura Appl. 48, 173–182 (1959) · Zbl 0148.08202 · doi:10.1007/BF02410664
[21]Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–191 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[22]Serrin, J.: The initial value problems for the Navier-Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems. University of Wisconsin Press, Madison (1963)
[23]Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Amsterdam (1977)
[24]Zhang, X.C.: A regularity criterion for the solutions of 3D Navier-Stokes equations. J. Math. Anal. Appl. 346, 336–339 (2008) · Zbl 1147.35337 · doi:10.1016/j.jmaa.2008.05.027
[25]Zhang, Z.F., Chen, Q.L.: Regularity criterion via two components of vorticity on weak solutions to the Navier-Stokes equations in R 3. J. Differ. Equ. 216, 470–481 (2005) · Zbl 1091.35064 · doi:10.1016/j.jde.2005.06.001
[26]Zhang, Z.J.: A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. arXiv: 1103.1545 [math. AP], 8 Mar 2011
[27]Zhang, Z.J., Yao, Z.A., Lu, M., Ni, L.D.: Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations. J. Math. Phys. 52, 053103 (2011)
[28]Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the direction of vorticity. Monatshefte Math. 144, 251–257 (2005) · Zbl 1072.35148 · doi:10.1007/s00605-004-0266-z
[29]Zhou, Y.: A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. 9, 563–578 (2002)
[30]Zhou, Y.: A new regularity criterion for weak solutions to the Navier-Stokes equations. J. Math. Pures Appl. 84, 1496–1514 (2005)
[31]Zhou, Y.: On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in R n . Z. Angew. Math. Phys. 57, 384–392 (2006) · Zbl 1099.35091 · doi:10.1007/s00033-005-0021-x
[32]Zhou, Y., Pokorný, M.: On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component. J. Math. Phys. 50, 123514 (2009) · Zbl 05772327 · doi:10.1063/1.3268589
[33]Zhou, Y., Pokorný, M.: On the regularity to the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity 23, 1097–1107 (2010) · Zbl 1190.35179 · doi:10.1088/0951-7715/23/5/004
[34]Zhou, Y.: Regularity criteria in terms of pressure for the 3D Navier-Stokes equations in a generic domain. Math. Ann. 328, 173–192 (2004) · Zbl 1054.35062 · doi:10.1007/s00208-003-0478-x
[35]Zhou, Y.: Weighted regularity criteria for the three-dimensional Navier-Stokes equations. Proc. R. Soc. Edinb., Sect. A, Math. 139, 661–671 (2009) · Zbl 1173.35634 · doi:10.1017/S0308210507000790