zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances. (English) Zbl 1257.92040

Summary: On the basis of the theories and methods of ecology and ordinary differential equations, a three-species ecological model with allochthonous nutrient input, impulse perturbations and seasonal disturbances is studied analytically and numerically. Using mathematical theoretical analysis, we obtain the threshold expression of the release amount, allochthonous nutrient input and seasonal disturbances parameter under the condition of some species extinction and all species persistence, which in turn provide a theoretical basis for the numerical simulation.

Numerical analysis indicates that the key factors for long-term dynamical behavior are impulse perturbation and allochthonous nutrient input with seasonal disturbances. Nonetheless, it should be stressed that the allochthonous nutrient input with seasonal disturbances can aggravate periodic oscillations and promote the emergence of chaos.These results show that impulse perturbations cannot prevent the indirect effect on complex population dynamics caused by allochthonous nutrient input with seasonal disturbances, which further confirm that allochthonous nutrient input with seasonal disturbances can play an important role in population persistence and evolutionary. All these results are expected to be useful in the study of complex dynamics of ecosystems.

34C60Qualitative investigation and simulation of models (ODE)
37N25Dynamical systems in biology
37D45Strange attractors, chaotic dynamics
37N25Dynamical systems in biology
65C20Models (numerical methods)
[1]Baek, H.; Do, Y.: Seasonal effects on a beddington – deangelis type predator – prey system with impulsive perturbations, Abstract and applied analysis, 19 (2009)
[2]Baek, H.; Do, Y.; Saito, Y.: Analysis of an impulsive predator-prey system with monod – Haldane functional response and seasonal effects, Mathematical problems in engineering, 16 (2009) · Zbl 1180.92085 · doi:10.1155/2009/543187
[3]Baek, H.; Sang, P.: Permanence and stability of an ivlev-type predator – prey system with impulsive control strategies, Mathematical and computer modelling 50, 1385-1393 (2009) · Zbl 1185.34067 · doi:10.1016/j.mcm.2009.07.007
[4]Bainov, D. D.; Covachev, V. C.: Impulsive differential equations with a small parameter, (1994) · Zbl 0828.34001
[5]Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: asymptotic properties of the solutions, (1993)
[6]Faria, L.; Costa, M.: Omnivorous food web, prey preference and allochthonous nutrient input, Ecological complexity 7, 107-114 (2010)
[7]Hou, J.; Teng, Z.: Continuous and impulsive vaccination of SEIR epidemic models with saturation incidence rates, Mathematics and computers in simulation 79, 3038-3054 (2009) · Zbl 1166.92034 · doi:10.1016/j.matcom.2009.02.001
[8]Hsu, B.; Hwang, T. W.; Kuang, Y.: Global analysis of the michaelis – menten-type ratio-dependent predator – prey system, Journal of mathematical biology 42, 489-506 (2001) · Zbl 0984.92035 · doi:10.1007/s002850100079
[9]Huxel, G. R.; Mccann, K.: Food web stability: the influence of trophic flows across habitats, American naturalist 152, 460-469 (1998)
[10]Huxel, G. R.; Mccann, K.; Polis, G. A.: Effects of partitioning allochthonous resources on food web stability, Ecological research 17, 419-432 (2002)
[11]Jiao, J.; Yang, X.; Cai, S.; Chen, L.: Dynamical analysis of a delayed predator – prey model with impulsive diffusion between two patches, Mathematics and computers in simulation 80, 522-532 (2009) · Zbl 1190.34107 · doi:10.1016/j.matcom.2009.07.008
[12]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[13]Lv, S.; Zhao, M.: The dynamic complexity of a three species food chain model, Chaos, solitons & fractals 37, 1469-1480 (2008) · Zbl 1142.92342 · doi:10.1016/j.chaos.2006.10.057
[14]Mccann, K. S.; Hastings, A.; Huxel, G. R.: Weak trophic interactions and balance of nature, Nature 395, 794-798 (1998)
[15]Moghadas, S. M.; Alexander, M. E.: Dynamics of a generalized Gauss-type predator – prey model with a seasonal functional response, Chaos, solitons & fractals 23, 55-65 (2005) · Zbl 1058.92049 · doi:10.1016/j.chaos.2004.04.030
[16]Namba, T.; Tanabe, K.; Maeda, N.: Omnivory and stability of food webs, Ecological complications 5, 73-85 (2008)
[17]Negi, K.; Gakkhar, S.: Dynamics in a beddington – deangelis prey-predator system with impulsive harvesting, Ecological modelling 206, 421-430 (2007)
[18]Pei, Y.; Li, C.; Chen, L.: Continuous and impulsive harvesting strategies in a stage-structured predator – prey model with time delay, Mathematics and computers in simulation 79, 2994-3008 (2009) · Zbl 1172.92038 · doi:10.1016/j.matcom.2009.01.003
[19]Polis, G. A.; Anderson, W. B.; Holt, R. D.: Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs, Annual review of ecology and systematics 28, 289-316 (1997)
[20]Rose, M. D.; Polis, G. A.: The distribution and abundance of coyotes: the effects of allochthonous food subsidies from the sea, Ecology 79, 998-1007 (1998)
[21]Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[22]Sun, S.; Chen, L.: Permanence and complexity of the eco-epidemiological model with impulsive perturbation, International journal of biomathematics 1, 121-132 (2008) · Zbl 1166.92039 · doi:10.1142/S1793524508000102
[23]Takimoto, G.; Iwata, T.; Murakami, M.: Seasonal subsidy stabilities food web dynamics: balance in a heterogeneous landscape, Ecological research 17, 433-439 (2002)
[24]Tan, Y.; Tao, F.; Chen, L.: Dynamics of a nonautonomous system with impulsive output, International journal of biomathematics 1, 225-238 (2008) · Zbl 1155.92034 · doi:10.1142/S1793524508000187
[25]Yu, H.; Zhong, S.; Agarwal, R. P.: Mathematics analysis and chaos in an ecological model with an impulsive control strategy, Communications in nonlinear science and numerical simulation 2, 776-786 (2011) · Zbl 1221.37207 · doi:10.1016/j.cnsns.2010.04.017
[26]Yu, H.; Zhong, S.; Agarwal, R. P.: Mathematics and dynamic analysis of an apparent competition community model with impulsive effect, Mathematical and computer modelling 52, 25-36 (2010) · Zbl 1201.34018 · doi:10.1016/j.mcm.2009.11.019
[27]Yu, H.; Zhong, S.; Ye, M.: Dynamic analysis of an ecological model with impulsive control strategy and distributed time delay, Mathematics and computers in simulation 80, 619-632 (2009) · Zbl 1178.92058 · doi:10.1016/j.matcom.2009.09.013
[28]Zavalishchin, S. T.; Sesekin, A. N.: Dynamic impulse systems theory and applications, mathematics and its applications, (1997)
[29]Zhang, L.; Zhao, M.: Dynamic complexities in a hyperparasitic system with prolonged dispause for host, Chaos, solitons & fractals 42, 1136-1142 (2009)
[30]Zhao, M.; Lv, S.: Chaos in a three-species food chain model with a beddington-deangelis functional response, Chaos, solitons & fractals 40, 2305-2316 (2009)
[31]Zhao, M.; Wang, X.; Yu, H.; Zhu, J.: Dynamics of an ecological model with impulsive control strategy and distributed time delay, Mathematics and computers in simulation 82, No. 8, 1432-1444 (2012)
[32]Zhao, M.; Yu, H.; Zhu, J.: Effects of a population floor on the persistence of chaos in a mutual interference host-parasitoid model, Chaos, solitons & fractals 42, 1245-1250 (2009)
[33]Zhao, M.; Zhang, L.: Permanence and chaos in a host-parasitoid model with prolonged diapause for the host, Communications in nonlinear science and numerical simulation 14, 4197-4203 (2009)
[34]Zhao, M.; Zhang, L.; Zhu, J.: Dynamics of a host-parasitoid model with prolonged diapause for parasitoid, Communications in nonlinear science and numerical simulation 16, 455-462 (2011) · Zbl 1221.37208 · doi:10.1016/j.cnsns.2010.03.011
[35]Zhu, L.; Zhao, M.: Dynamic complexity of a host-parasitoid ecological model with the hassell growth function for the host, Chaos, solitons & fractals 39, 1259-1269 (2009) · Zbl 1197.37133 · doi:10.1016/j.chaos.2007.10.023