zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Extended Kalman filtering with stochastic nonlinearities and multiple missing measurements. (English) Zbl 1257.93099
Summary: In this paper, the extended Kalman filtering problem is investigated for a class of nonlinear systems with multiple missing measurements over a finite horizon. Both deterministic and stochastic nonlinearities are included in the system model, where the stochastic nonlinearities are described by statistical means that could reflect the multiplicative stochastic disturbances. The phenomenon of measurement missing occurs in a random way and the missing probability for each sensor is governed by an individual random variable satisfying a certain probability distribution over the interval [0,1]. Such a probability distribution is allowed to be any commonly used distribution over the interval [0,1] with known conditional probability. The aim of the addressed filtering problem is to design a filter such that, in the presence of both the stochastic nonlinearities and multiple missing measurements, there exists an upper bound for the filtering error covariance. Subsequently, such an upper bound is minimized by properly designing the filter gain at each sampling instant. It is shown that the desired filter can be obtained in terms of the solutions to two Riccati-like difference equations that are of a form suitable for recursive computation in online applications. An illustrative example is given to demonstrate the effectiveness of the proposed filter design scheme.
MSC:
93E11Filtering in stochastic control
93E10Estimation and detection in stochastic control
93C10Nonlinear control systems
93C55Discrete-time control systems
References:
[1]Basin, M.; Shi, P.; Calderon-Alvarez, D.: Central suboptimal H filter design for nonlinear polynomial systems, International journal of adaptive control and signal processing 23, No. 10, 926-939 (2009)
[2]Basin, M.; Shi, P.; Calderon-Alvarez, D.: Approximate finite-dimensional filtering for polynomial states over polynomial observations, International journal of control 83, No. 4, 724-730 (2010) · Zbl 1209.93149 · doi:10.1080/00207170903390179
[3]Bishop, A. N.; Savkin, A. V.; Pathirana, P. N.: Vision-based target tracking and surveillance with robust set-valued state estimation, IEEE signal processing letters 17, No. 3, 289-292 (2010)
[4]Calafiore, G.: Reliable localization using set-valued nonlinear filters, IEEE transactions on systems, man, and cybernetics-part A: systems and humans 35, No. 2, 189-197 (2005)
[5]Cheng, T. M.; Malyavej, V.; Savkin, A. V.: Decentralized robust set-valued state estimation in networked multiple sensor systems, Computers mathematics with applications 59, No. 8, 2636-2646 (2010) · Zbl 1193.93160 · doi:10.1016/j.camwa.2010.01.032
[6]Chen, W.; Zheng, W.: Exponential stability of nonlinear time-delay systems with delayed impulse effects, Automatica 47, No. 5, 1075-1083 (2011) · Zbl 1233.93080 · doi:10.1016/j.automatica.2011.02.031
[7]Horn, R. A.; Johnson, C. R.: Topic in matrix analysis, (1991)
[8]Hounkpevi, F. O.; Yaz, E.: Robust minimum variance linear state estimators for multiple sensors with different failure rates, Automatica 43, No. 7, 1274-1280 (2007) · Zbl 1123.93085 · doi:10.1016/j.automatica.2006.12.025
[9]Hounkpevi, F. O.; Yaz, E.: Minimum variance generalized state estimators for multiple sensors with different delay rates, Signal processing 87, No. 4, 602-613 (2007) · Zbl 1186.94148 · doi:10.1016/j.sigpro.2006.06.017
[10]James, M. R.; Petersen, I. R.: Nonlinear state estimation for uncertain systems with an integral constraint, IEEE transactions on signal processing 46, No. 11, 2926-2937 (1998)
[11]Kallapur, A. G.; Petersen, I. R.; Anavatti, S. G.: A discrete-time robust extended Kalman filter for uncertain systems with sum quadratic constraints, IEEE transactions on automatic control 54, No. 4, 850-854 (2009)
[12]Kluge, S.; Reif, K.; Brokate, M.: Stochastic stability of the extended Kalman filter with intermittent observations, IEEE transactions on automatic control 55, No. 2, 514-518 (2010)
[13]Li, P.; Lam, J.: Disturbance analysis of nonlinear differential equation models of genetic SUM regulatory networks, IEEE-ACM transactions on computational biology and bioinformatics 8, No. 1, 253-259 (2011)
[14]Li, P.; Lam, J.; Shu, Z.: H positive filtering for positive linear discrete-time systems: an augmentation approach, IEEE transactions on automatic control 55, No. 10, 2337-2342 (2010)
[15]Mao, X.: Stochastic differential equations and applications, (2007)
[16]Nanacara, W.; Yaz, E.: Recursive estimators for linear and nonlinear systems with uncertain observations, Signal processing 62, No. 2, 215-228 (1997) · Zbl 0908.93061 · doi:10.1016/S0165-1684(97)00126-6
[17]Pathirana, P. N.; Ekanayake, S. W.; Savkin, A. V.: Fusion based 3D tracking of mobile transmitters via robust set-valued state estimation with RSS measurements, IEEE communications letters 15, No. 5, 554-556 (2011)
[18]Reif, K.; Günther, S.; Yaz, E.; Unbehauen, R.: Stochastic stability of the discrete-time extended Kalman filter, IEEE transactions on automatic control 44, No. 4, 714-728 (1999) · Zbl 0967.93090 · doi:10.1109/9.754809
[19]Rotstein, H., Sznaier, M., & Idan, M. (1994). H2/Hfiltering-theory and an aerospace application. In Proceedings of the 1994 American control conference. 2, (pp. 1791–1795).
[20]Sahebsara, M.; Chen, T.; Shah, S. L.: Optimal H2 filtering with random sensor delay, multiple packet dropout and uncertain observations, International journal of control 80, No. 2, 292-301 (2007) · Zbl 1140.93486 · doi:10.1080/00207170601019500
[21]Shi, P.; Mahmoud, M.; Nguang, S. K.; Ismail, A.: Robust filtering for jumping systems with mode-dependent delays, Signal processing 86, No. 1, 140-152 (2006) · Zbl 1163.94387 · doi:10.1016/j.sigpro.2005.05.005
[22]Sun, S.; Xie, L.; Xiao, W.; Soh, Y. C.: Optimal linear estimation for systems with multiple packet dropouts, Automatica 44, No. 5, 1333-1342 (2008)
[23]Theodor, Y.; Shaked, U.: Robust discrete-time minimum-variance filtering, IEEE transactions on signal processing 44, No. 2, 181-189 (1996)
[24]Wang, Z.; Ho, D. W. C.; Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements, IEEE transactions on automatic control 48, No. 7, 1254-1258 (2003)
[25]Wang, Z.; Liu, X.; Liu, Y.; Liang, J.; Vinciotti, V.: An extended Kalman filtering approach to modelling nonlinear dynamic gene regulatory networks via short gene expression time series, IEEE/ACM transactions on computational biology and bioinformatics 6, No. 3, 410-419 (2009)
[26]Wei, G.; Wang, Z.; Shu, H.: Robust filtering with stochastic nonlinearities and multiple missing measurements, Automatica 45, No. 3, 836-841 (2009) · Zbl 1168.93407 · doi:10.1016/j.automatica.2008.10.028
[27]Wu, L.; Zheng, W.: Weighted H model reduction for linear switched systems with time-varying delay, Automatica 45, No. 1, 186-193 (2009) · Zbl 1154.93326 · doi:10.1016/j.automatica.2008.06.024
[28]Xie, L.; Lu, L.; Zhang, D.; Zhang, H.: Improved robust H2 and H filtering for uncertain discrete-time systems, Automatica 40, No. 5, 873-880 (2004) · Zbl 1050.93072 · doi:10.1016/j.automatica.2004.01.003
[29]Xie, L.; Soh, Y. C.; De Souza, C. E.: Robust Kalman filtering for uncertain discrete-time systems, IEEE transactions on automatic control 39, No. 6, 1310-1314 (1994) · Zbl 0812.93069 · doi:10.1109/9.293203
[30]Xiong, J.; Lam, J.: Fixed-order robust H filter design for Markovian jump systems with uncertain switching probabilities, IEEE transactions on signal processing 54, No. 4, 1421-1430 (2006)
[31]Xiong, K.; Liu, L.; Liu, Y.: Robust extended Kalman filtering for nonlinear systems with multiplicative noises, Optimal control applications and methods 32, No. 1, 47-63 (2011) · Zbl 1213.93192 · doi:10.1002/oca.928
[32]Xiong, K.; Wei, C.; Liu, L.: Robust extended Kalman filtering for nonlinear systems with stochastic uncertainties, IEEE transactions on systems, man, and cybernetics-part A: systems and humans 40, No. 2, 399-405 (2010)
[33]Yaz, E.: On the optimal state estimation of a class of discrete-time nonlinear systems, IEEE transactions on circuits and systems 34, No. 9, 1127-1129 (1987) · Zbl 0633.93064 · doi:10.1109/TCS.1987.1086256
[34]Yaz, E.; Yaz, Y.: State estimation of uncertain nonlinear stochastic systems with general criteria, Applied mathematics letters 14, No. 5, 605-610 (2001) · Zbl 0976.93078 · doi:10.1016/S0893-9659(00)00201-9
[35]Yaz, Y.; Yaz, E.: A new formulation of some discrete-time stochastic parameter state estimation problems, Applied mathematics letters 10, No. 6, 13-19 (1997) · Zbl 0887.93063 · doi:10.1016/S0893-9659(97)00099-2
[36]Yue, D.; Han, Q.: Network-based robust H filtering for uncertain linear systems, IEEE transactions on signal processing 54, No. 11, 4293-4301 (2006)