zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Generalized synchronization of the fractional-order chaos in weighted complex dynamical networks with nonidentical nodes. (English) Zbl 1258.34130
Summary: A fractional-order weighted complex network consists of a number of nodes, which are the fractional-order chaotic systems, and weighted connections between the nodes. In this paper, we investigate generalized chaotic synchronization of the general fractional-order weighted complex dynamical networks with nonidentical nodes. The well-studied integer-order complex networks are the special cases of the fractional-order ones. Based on the stability theory of linear fraction-order systems, the nonlinear controllers are designed to make the fractional-order complex dynamical networks with distinct nodes asymptotically synchronize onto any smooth goal dynamics. Numerical simulations are provided to verify the theoretical results. It is worth noting that the synchronization effect sensitively depends on both the fractional order θ and the feedback gain k i . Moreover, generalized synchronization of the fractional-order weighted networks can still be achieved effectively with the existence of noise perturbation.
MSC:
34D06Synchronization
34C28Complex behavior, chaotic systems (ODE)
34A08Fractional differential equations
92B20General theory of neural networks (mathematical biology)
34F05ODE with randomness
References:
[1]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Rulkov, N.F., Sushchik, M.M., Tsimring, L.S.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995) · doi:10.1103/PhysRevE.51.980
[3]Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82, 3042–3045 (1999) · doi:10.1103/PhysRevLett.82.3042
[4]Li, C., Liao, X.: Lag synchronization of Rössler system and Chua circuit via a scalar signal. Phys. Lett. A 329, 301–308 (2004) · Zbl 1209.93118 · doi:10.1016/j.physleta.2004.06.077
[5]Watts, D.J., Strogatz, S.H.: Collective dynamics of ”small-world” networks. Nature 393, 440–442 (1998) · doi:10.1038/30918
[6]Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[7]Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001) · doi:10.1038/35065725
[8]Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002) · Zbl 1205.82086 · doi:10.1103/RevModPhys.74.47
[9]Pastor-Satorras, R., Smith, E., Sole, R.V.: Evolving protein interaction networks through gene duplication. J. Theor. Biol. 222, 199–210 (2003) · doi:10.1016/S0022-5193(03)00028-6
[10]Wang, X.F., Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility. IEEE Trans. Circuits Syst. I 49, 54–62 (2002) · doi:10.1109/81.974874
[11]Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, Singapore (2007)
[12]Arenas, A., Guilera, A.D., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) · doi:10.1016/j.physrep.2008.09.002
[13]Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[14]Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Crossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010) · Zbl 1204.93064 · doi:10.1007/s11071-010-9668-8
[15]Sun, W., Wang, R., Wang, W., Cao, J.: Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn. Neurodyn. 4, 225–231 (2010) · doi:10.1007/s11571-010-9118-9
[16]Chen, J., Jiao, L., Wu, J., Wang, X.: Projective synchronization with different scale factors in a driven–response complex network and its application in image encryption. Nonlinear Anal. Real World Appl. 11, 3045–3058 (2010) · Zbl 1214.93014 · doi:10.1016/j.nonrwa.2009.11.003
[17]Hu, C., Yu, J., Jiang, H., Teng, Z.: Synchronization of complex community networks with nonidentical nodes and adaptive coupling strength. Phys. Lett. A 375, 873–879 (2011) · Zbl 1242.05255 · doi:10.1016/j.physleta.2010.12.057
[18]Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
[19]Hifer, R.: Applications of Fractional Calculus in Physics. World Scientific, Hackensack (2001)
[20]Koeller, R.C.: Application of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51, 299–307 (1984) · Zbl 0544.73052 · doi:10.1115/1.3167616
[21]Ichise, M., Nagayanagi, Y., Kojima, T.: An analog simulation of noninteger order transfer functions for analysis of electrode process. J. Electroanal. Chem. 33, 253–265 (1971) · doi:10.1016/S0022-0728(71)80115-8
[22]Heaviside, O.: Electromagnetic Theory. Chelsea, New York (1971)
[23]Li, C.G., Chen, G.R.: Chaos and hyperchaos in fractional order Rössler equations. Physica A 341, 55–61 (2004) · doi:10.1016/j.physa.2004.04.113
[24]Wu, X.J., Shen, S.L.: Chaos in the fractional-order Lorenz system. Int. J. Comput. Math. 86, 1274–1282 (2009) · Zbl 1169.65115 · doi:10.1080/00207160701864426
[25]Wu, X., Li, J., Chen, G.: Chaos in the fractional order unified system and its synchronization. J. Franklin Inst. 345, 392–401 (2008) · Zbl 1166.34030 · doi:10.1016/j.jfranklin.2007.11.003
[26]Tang, Y., Wang, Z., Fang, J.: Ping control of fractional-order weighted complex networks. Chaos 19, 013112 (2009)
[27]Tang, Y., Fang, J.: Synchronization of N-coupled fractional-order chaotic systems with ring connection. Commun. Nonlinear Sci. Numer. Simul. 15, 401–412 (2010) · Zbl 1221.34103 · doi:10.1016/j.cnsns.2009.03.024
[28]Wang, J., Zhang, Y.: Network synchronization in a population of star-coupled fractional nonlinear oscillators. Phys. Lett. A 374, 1464–1468 (2010) · Zbl 1236.05188 · doi:10.1016/j.physleta.2010.01.042
[29]Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003) · Zbl 1029.68010 · doi:10.1137/S003614450342480
[30]Caputo, M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[31]Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29, 3–22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[32]Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002) · doi:10.1006/jmaa.2000.7194
[33]Khalil, H.K.: Nonlinear Systems. Prentice-Hall, Englewood Cliffs (2002)
[34]Wang, X., Wang, M.: Dynamic analysis of the fractional-order Liu system and its synchronization. Chaos 17, 033106 (2007)
[35]Lu, J.: Chaotic dynamics of the fractional-order Lü system and its synchronization. Phys. Lett. A 354, 305–311 (2006) · doi:10.1016/j.physleta.2006.01.068
[36]Li, C.P., Peng, G.J.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22, 443–450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013