zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Optimal control computation for nonlinear systems with state-dependent stopping criteria. (English) Zbl 1258.49051
Summary: In this paper, we consider a challenging optimal control problem in which the terminal time is determined by a stopping criterion. This stopping criterion is defined by a smooth surface in the state space; when the state trajectory hits this surface, the governing dynamic system stops. By restricting the controls to piecewise constant functions, we derive a finite-dimensional approximation of the optimal control problem. We then develop an efficient computational method, based on nonlinear programming, for solving the approximate problem. We conclude the paper with four numerical examples.
MSC:
49M37Methods of nonlinear programming type in calculus of variations
49K15Optimal control problems with ODE (optimality conditions)
90C30Nonlinear programming
References:
[1]Ahmed, N. U.: Elements of finite-dimensional systems and control theory, (1988)
[2]Bulirsch, R.; Nerz, E.; Pesch, H. J.; Von Stryk, O.: Combining direct and indirect methods in optimal control: range maximization of a hang glider, Optimal control: calculus of variations, optimal control theory and numerical methods 111, 273-288 (1993) · Zbl 0808.65067
[3]Chyba, M.; Haberkorn, T.; Singh, S. B.; Smith, R. N.; Choi, S. K.: Increasing underwater vehicle autonomy by reducing energy consumption, Ocean engineering 36, 62-73 (2009)
[4]Gerdts, M.; Kunkel, M.: A nonsmooth Newton’s method for discretized optimal control problems with state and control constraints, Journal of industrial and management optimization 4, 247-270 (2008) · Zbl 1157.49036 · doi:10.3934/jimo.2008.4.247 · doi:http://aimsciences.org/journals/redirecting.jsp?paperID=3260
[5]Hager, W. W.: Runge–Kutta methods in optimal control and the transformed adjoint system, Numerische Mathematik 87, 247-282 (2000) · Zbl 0991.49020 · doi:10.1007/s002110000178
[6]Hindmarsh, A. C.: Large ordinary differential equation systems and software, IEEE control systems magazine 2, 24-30 (1982)
[7]Jennings, L. S., Fisher, M. E., Teo, K. L., & Goh, C. J. (2004). MISER3 optimal control software: theory and user manual. University of Western Australia, Perth. July.
[8]Kaya, C. Y.; Martínez, J. M.: Euler discretization and inexact restoration for optimal control, Journal of optimization theory and applications 134, 191-206 (2007) · Zbl 1135.49019 · doi:10.1007/s10957-007-9217-x
[9]Kaya, C. Y.; Noakes, J. L.: Computational method for time-optimal switching control, Journal of optimization theory and applications 117, 69-92 (2003) · Zbl 1029.49029 · doi:10.1023/A:1023600422807
[10]Lee, H. W. J.; Teo, K. L.; Rehbock, V.; Jennings, L. S.: Control parametrization enhancing technique for time optimal control problems, Dynamic systems and applications 6, 243-262 (1997) · Zbl 0894.49018
[11]Lin, Q.; Loxton, R.; Teo, K. L.; Wu, Y. H.: A new computational method for a class of free terminal time optimal control problems, Pacific journal of optimization 7, 63-81 (2011) · Zbl 1211.49041 · doi:http://www.ybook.co.jp/online/pjoe/vol7/63.html
[12]Loxton, R.; Teo, K. L.; Rehbock, V.: Optimal control problems with multiple characteristic time points in the objective and constraints, Automatica 44, 2923-2929 (2008) · Zbl 1160.49033 · doi:10.1016/j.automatica.2008.04.011
[13]Luenberger, D. G.; Ye, Y.: Linear and nonlinear programming, (2008)
[14]Luus, R.: Iterative dynamic programming, (2000)
[15]Nocedal, J.; Wright, S. J.: Numerical optimization, (2006)
[16]Schittkowski, K. (2007). NLPQLP: a fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search–user’s guide, version 2.24. University of Bayreuth, Bayreuth, June.
[17]Teo, K. L.; Goh, C. J.; Lim, C. C.: A computational method for a class of dynamical optimization problems in which the terminal time is conditionally free, IMA journal of mathematical control and information 6, 81-95 (1989) · Zbl 0673.49013 · doi:10.1093/imamci/6.1.81
[18]Teo, K. L.; Goh, C. J.; Wong, K. H.: A unified computational approach to optimal control problems, (1991) · Zbl 0747.49005
[19]Teo, K. L.; Jepps, G.; Moore, E. J.; Hayes, S.: A computational method for free time optimal control problems, with application to maximizing the range of an aircraft-like projectile, Journal of the australian mathematical society, series B (Applied mathematics) 28, 393-413 (1987) · Zbl 0654.70031 · doi:10.1017/S0334270000005476
[20]Vanderbei, R. J.: Case studies in trajectory optimization: trains, planes, and other pastimes, Optimization and engineering 2, 215-243 (2001) · Zbl 1011.49026 · doi:10.1023/A:1013145328012
[21]Vincent, T. L.; Grantham, W. J.: Optimality in parametric systems, (1981) · Zbl 0485.49001