zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hydromagnetic free convection flow with induced magnetic field effects. (English) Zbl 1258.76198
Summary: An exact solution is presented for the hydromagnetic natural convection boundary layer flow past an infinite vertical flat plate under the influence of a transverse magnetic field with magnetic induction effects included. The transformed ordinary differential equations are solved exactly, under physically appropriate boundary conditions. Closed-form expressions are obtained for the non-dimensional velocity (u), non-dimensional induced magnetic field component (B x ) and wall frictional shearing stress i.e. skin friction function (τ x ) as functions of dimensionless transverse coordinate (η), Grashof free convection number (G r ) and the Hartmann number (M). The bulk temperature in the boundary layer (Θ) is also evaluated and shown to be purely a function of M. The Rayleigh flow distribution (R) is derived and found to be a function of both Hartmann number (M) and the buoyant diffusivity parameter (ϑ * ). The influence of Grashof number on velocity, induced magnetic field and wall shear stress profiles is computed. The response of Rayleigh flow distribution to Grashof numbers ranging from 2 to 200 is also discussed as is the influence of Hartmann number on the bulk temperature. Rayleigh flow is demonstrated to become stable with respect to the width of the boundary layer region and intensifies with greater magnetic field i.e. larger Hartman number M, for constant buoyant diffusivity parameter ϑ * . The induced magnetic field (B x ), is elevated in the vicinity of the plate surface with a rise in free convection (buoyancy) parameter G r , but is reduced over the central zone of the boundary layer regime. Applications of the study include laminar magneto-aerodynamics, materials processing and MHD propulsion thermo-fluid dynamics.
MSC:
76W05Magnetohydrodynamics and electrohydrodynamics
76R10Free convection (fluid mechanics)
80A20Heat and mass transfer, heat flow
References:
[1]Chanty JMG (1994) Magnetized plasma flow over an insulator at high magnetic Reynolds number. AIAA J Thermophys Heat Transf 8(4):795–797 · doi:10.2514/3.614
[2]Munipalli R, Aithal S, Shankar V (2003) Effect of wall conduction in proposed MHD enhanced hypersonic vehicles. In: 12th AIAA international space planes and hypersonic systems and technologies conference, Norfolk, VA, 15–19 December 2003
[3]Soundalgekar VM, Takhar HS (1977) On MHD flow and heat transfer over a semi-infinite plate under transverse magnetic field. Nucl Eng Des 42(2):233–236 · doi:10.1016/0029-5493(77)90184-4
[4]Soundalgekar VM, Akolkar SP (1980) Effects of external circuit on heat transfer in MHD channel flow of rarefied gas. Nucl Eng Des 58(1):75–78 · doi:10.1016/0029-5493(80)90095-3
[5]Yagawa G, Masuda M (1982) Finite element analysis of magnetohydrodynamics and its application to lithium blanket design of a fusion reactor. Nucl Eng Des 71(1–2):121–136 · doi:10.1016/0029-5493(82)90174-1
[6]Ahluwalia RK, Doss ED (1980) Convective heat transfer in MHD channels and its influence on channel performance. AIAA J Energy 4(3):126–134 · doi:10.2514/3.62466
[7]Takhar HS, Bég OA (1997) Effects of transverse magnetic field, Prandtl number and Reynolds number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat plate in saturated porous media. Int J Energy Res 21:87–100 · doi:10.1002/(SICI)1099-114X(199701)21:1<87::AID-ER259>3.0.CO;2-7
[8]Helmy KA (1999) MHD unsteady free convection flow past a vertical porous plate. Z Angew Math Mech 78:225–270
[9]Bhargava R, Kumar L, Takhar HS (2003) Numerical solution of free convection MHD micropolar fluid flow between two parallel porous vertical plates. Int J Eng Sci 41(2):123–136 · Zbl 1211.76139 · doi:10.1016/S0020-7225(02)00157-X
[10]Damseh RA (2006) Magnetohydrodynamics-mixed convection from radiate vertical isothermal surface embedded in a saturated porous medium. ASME J Appl Mech 73(1):54–59 · Zbl 1111.74381 · doi:10.1115/1.1991863
[11]Naroua H (2006) Computational solution of hydromagnetic free convective flow past a vertical plate in a rotating heat generating fluid with Hall and ionslip currents. Int J Numer Methods Fluids 53(10):647–658
[12]Zueco J (2007) Network simulation method applied to radiation and viscous dissipation effects on MHD unsteady free convection over vertical porous plate. Appl Math Model 31(9):2019–2033 · doi:10.1016/j.apm.2007.05.001
[13]Ghosh SK, Pop I (2006) A new approach on MHD natural convection boundary layer flow past a flat plate of finite dimensions. Heat Mass Transf 42(7):587–595 · doi:10.1007/s00231-005-0047-9
[14]Snyder WT, Erlasan AH (1969) Energy dissipation in MHD duct flow. AIAA J 7(1):150–151 · Zbl 0175.24406 · doi:10.2514/3.5050
[15]Denno KI, Fouad AA (1972) Effects of the induced magnetic field on the magnetohydrodynamic channel flow. IEEE Trans Electron Dev 19(3):322–331 · doi:10.1109/T-ED.1972.17421
[16]Megakhed AA (1974) Effect of induced magnetic field and heat transfer on nonstationary magnetohydrodynamic flow around a porous plate. Magnetohydrodynamics 10(1):48–52
[17]Helliwell JB (1979) Radiative magnetogasdynamic Couette flow with variable parameters. Z Angew Math Phys 30(5):811–824 · Zbl 0407.76080 · doi:10.1007/BF01590689
[18]Ghosh SK (1993) Unsteady hydromagnetic flow in a rotating channel with oscillating pressure gradient. J Phys Soc Jpn 62(11):3893–3903 · doi:10.1143/JPSJ.62.3893
[19]Takhar HS, Kumari M, Nath G (1993) Unsteady free convection flow under the influence of a magnetic field. Arch Appl Mech 63(4–5):313–321 · Zbl 0794.76083 · doi:10.1007/BF00793897
[20]Takhar HS, Chamkha AJ, Nath G (1999) Unsteady flow and heat transfer on a semi-infinite flat plate with an aligned magnetic field. Int J Eng Sci 37(13):1723–1736 · doi:10.1016/S0020-7225(98)00144-X
[21]Pop I, Ghosh SK, Nandi DK (2001) Effects of the Hall current on free and forced convective flows in a rotating channel in the presence of an inclined magnetic field. Magnetohydrodynamics 37(4):348–359
[22]Bég OA, Bakier AY, Prasad V, Zueco J, Ghosh SK (2009) Nonsimilar, laminar, steady, electrically-conducting forced convection liquid metal boundary layer flow with induced magnetic field effects. Int J Therm Sci 48(8):1596–1606 · doi:10.1016/j.ijthermalsci.2008.12.007
[23]Chen T-M (2008) Radiation effects on magnetohydrodynamic free convection flow, Technical Note. AIAA J Thermophys Heat Transf 22(1):125–128 · doi:10.2514/1.33027
[24]Soundalgekar VM, Gupta SK, Birajdar NS (1979) Effects of mass transfer and free convection currents on MHD Stokes’ problem for a vertical plate. Nucl Eng Des 53(3):339–346 · doi:10.1016/0029-5493(79)90060-8
[25]Lewandowski WM (1991) Natural convection heat transfer from plates of finite dimension. Int J Heat Mass Transf 34:875–885 · doi:10.1016/0017-9310(91)90133-Y
[26]Isachenko VP, Osipova VA, Sukomel AS (1969). In: Heat transfer. Mir, Moscow, pp 341–451
[27]Landau LD, Lifschitz EM (1960) Electrodynamics of continuous media. International course in theoretical physics. Pergamon, London
[28]Eringen AC, Maugin GA (1989) Electrodynamics of continua, vol II. Springer, New York
[29]Meyer RC (1958) On reducing aerodynamic heat-transfer rates by magneto-hydrodynamic techniques. J Aerospace Sci 25:561–566 · doi:10.2514/8.7781
[30]Datta N, Jana RN (1977) Hall effects on hydromagnetic flow and heat transfer in a rotating channel. IMA J Appl Math 19(2):217–229 · Zbl 0364.76089 · doi:10.1093/imamat/19.2.217
[31]Bég OA, Zueco J, Takhar HS (2009) Unsteady magnetohydrodynamic Hartmann-Couette flow and heat transfer in a Darcian channel with Hall current, ionslip, viscous and Joule heating effects: network numerical solutions. Commun Nonlinear Sci Numer Simul 14:1082–1097 · doi:10.1016/j.cnsns.2008.03.015
[32]Naroua H, Takhar HS, Ram PC, Bég TA, Bég OA, Bhargava R (2007) Transient rotating hydromagnetic partially-ionized heat-generating gas dynamic flow with Hall/Ionslip current effects: finite element analysis. Int J Fluid Mech Res 34(6):493–505 · doi:10.1615/InterJFluidMechRes.v34.i6.10
[33]Cramer KR, Pai S-I (1973) Magnetofluid dynamics for engineers and applied physicists. MacGraw-Hill, New York