zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two consensus problems for discrete-time multi-agent systems with switching network topology. (English) Zbl 1258.93015
Summary: In this paper, we study both the leaderless consensus problem and the leader-following consensus problem for linear discrete-time multi-agent systems under switching network topology. Under the assumption that the system matrix is marginally stable, we show that these two consensus problems can be solved via the state feedback protocols, provided that the dynamic graph is jointly connected. Our result will contain several existing results as special cases. The proof is based on the stability analysis of a class of linear discrete-time switched systems which may have some independent interest.
MSC:
93A14Decentralized systems
68T42Agent technology (AI aspects)
93B52Feedback control
93C55Discrete-time control systems
References:
[1]Ben-Israel, A.; Greville, T. N. E.: Generalized inverse: theory and applications, (2003)
[2]Bertsekas, D. P.; Tsitsiklis, J. N.: Parall and distributed computation: numerical methods, (1989) · Zbl 0743.65107
[3]Cheng, D.; Guo, L.; Huang, J.: On quadratic Lyapunov function, IEEE transactions on automatic control 48, No. 5, 885-890 (2003)
[4]Godsil, C.; Royle, G.: Algebraic graph theory, (2001)
[5]Hong, Y.; Chen, G.; Bushnell, L.: Distributed observers design for leader-following control of multi-agent networks, Automatica 44, No. 3, 846-850 (2008)
[6]Hong, Y.; Gao, L.; Cheng, D.; Hu, J.: Lyapunov-based approach to multiagent systems with switching jointly connected interconnection, IEEE transactions on automatic control 52, No. 5, 943-948 (2007)
[7]Jadbabaie, A.; Lin, J.; Morse, A. S.: Coordination of groups of mobile agents using nearest neighbor rules, IEEE transactions on automatic control 48, No. 6, 988-1001 (2003)
[8]Ji, Z.; Wang, Z.; Lin, H.; Wang, Z.: Interconnection topologies for multi-agent coordination under leader-follower framework, Automatica 45, No. 12, 2857-2863 (2009) · Zbl 1192.93013 · doi:10.1016/j.automatica.2009.09.002
[9]Liberzon, D.; Morse, A. S.: Basic problems in stability and design of switched system, IEEE control systems magazine 19, No. 5, 59-70 (1999)
[10]Lin, Z. (2005). Coupled dynamic systems: from structure towards stability and stabilizability. Ph.D. dissertation. University of Toronto, Toronto, Canada.
[11]Nedić, A.; Olshevsky, A.; Ozdaglar, A.; Tsitsiklis, J. N.: On distributed averaging algorithms and quantization effects, IEEE transactions on automatic control 54, No. 11, 2506-2616 (2009)
[12]Ni, W.; Cheng, D.: Leader-following consensus of multi-agent systems under fixed and switching topologies, Systems and control letters 59, No. 3, 209-217 (2010) · Zbl 1223.93006 · doi:10.1016/j.sysconle.2010.01.006
[13]Olfati-Saber, R.; Fax, J. A.; Murray, R. M.: Consensus and cooperation in networked multi-agent systems, Proceedings of the IEEE 95, No. 1, 215-233 (2007)
[14]Olfati-Saber, R.; Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control 49, No. 9, 1520-1533 (2004)
[15]Qin, J.; Gao, H.; Zheng, W.: Second-order consensus for multi-agent systems with switching topology and communication delay, Systems control letters 60, No. 6, 390-397 (2011) · Zbl 1225.93020 · doi:10.1016/j.sysconle.2011.03.004
[16]Qin, J.; Zheng, W.; Gao, H.: Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology, Automatica 47, No. 9, 1983-1991 (2011) · Zbl 1227.93011 · doi:10.1016/j.automatica.2011.05.014
[17]Qu, Z.: Cooperative control of dynamical systems: applications to autonomous vehicles, (2009)
[18]Ren, W.: On consensus algorithms for double-integrator dynamics, IEEE transactions on automatic control 53, No. 6, 1503-1509 (2008)
[19]Ren, W.: Synchronization of coupled harmonic oscillators with local interaction, Automatica 44, No. 2, 3195-3200 (2008) · Zbl 1153.93421 · doi:10.1016/j.automatica.2008.05.027
[20]Ren, W.; Beard, R. W.: Distributed consensus in multi-vehicle cooperative control, Communications and control engineering series (2008)
[21]Ren, W.; Beard, R. W.: Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE transactions on automatic control 50, No. 5, 655-661 (2005)
[22]Scardovi, L.; Sepulchre, R.: Synchronization in networks of identical linear systems, Automatica 45, No. 11, 2557-2562 (2009) · Zbl 1183.93054 · doi:10.1016/j.automatica.2009.07.006
[23]Shen, B.; Wang, Z.; Hung, Y. S.: Distributed consensus H-infinity filtering in sensor networks with multiple missing measurements: the finite-horizon case, Automatica 46, No. 10, 1682-1688 (2010) · Zbl 1204.93122 · doi:10.1016/j.automatica.2010.06.025
[24]Su, Y.; Huang, J.: Stability of a class of linear switching systems with applications to two consensus problems, IEEE transactions on automatic control 57, No. 6, 1420-1430 (2012)
[25]Tsitsiklis, J.N. (1984). Problems in decentralized decision making and computation. Ph.D. thesis. Department of EECS, MIT, technical report LIDS-TH-1424, Laboratory for Information and Decision Systems, MIT.
[26]Tuna, S. E.: Synchronizing linear systems via partial-state coupling, Automatica 44, No. 8, 2179-2184 (2008)
[27]Wang, J.; Cheng, D.; Hu, X.: Consensus of multi-agent linear dynamic systems, Asian journal of control 10, No. 2, 144-155 (2008)
[28]Xu, J., Li, T., Xie, L., & Lum, K.Y. (2011). Dynamic consensus and formation: fixed and switching topologies. In Proceedings of 18th IFAC world congress (pp. 9188–9193). Milan, Italy, August 28–September 2.
[29]You, K.; Xie, L.: Coordination of discrete-time multi-agent systems via relative output feedback, Internal journal of robust and nonlinear control 21, No. 13, 1587-1605 (2011) · Zbl 1227.93013 · doi:10.1002/rnc.1659
[30]You, K.; Xie, L.: Network topology and communication data rate for consensusability of discrete-time multi-agent systems, IEEE transactions on automatic control 56, No. 10, 2262-2275 (2011)