zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Sinc-Galerkin method for numerical solution of the Bratu’s problems. (English) Zbl 1259.65126
Summary: A study of the performance of the Galerkin method using sinc basis functions for solving Bratu’s problem is presented. An error analysis of the presented method is given. The method is applied to two test examples. By considering the maximum, absolute errors in the solutions at the sinc grid points are tabulated in tables for different choices of step size. We conclude that the sinc-Galerkin method converges to the exact solution rapidly, with order O(exp(-cn)) accuracy, where c is independent of n.
MSC:
65L15Eigenvalue problems for ODE (numerical methods)
34L30Nonlinear ordinary differential operators
34L15Eigenvalues, estimation of eigenvalues, upper and lower bounds for OD operators
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
References:
[1]Buckmire, R.: Application of a Mickens finite-difference scheme to the cylindrical Bratu-Gelfand problem. Numer. Methods Partial Differential Equations 20(3), 327–337 (2004) · Zbl 1048.65102 · doi:10.1002/num.10093
[2]Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differential Equations 184, 283–298 (2002) · Zbl 1015.34013 · doi:10.1006/jdeq.2001.4151
[3]Mcgough, J.S.: Numerical continuation and the Gelfand problem. Appl. Math. Comput. 89, 225–239 (1998) · Zbl 0908.65094 · doi:10.1016/S0096-3003(97)81660-8
[4]Mounim, A.S., de Dormale, B.M.: From the fitting techniques to accurate schemes for the Liouville-Bratu-Gelfand problem. Numer. Methods Partial Differential Equations 22(4), 761–775 (2006) · Zbl 1099.65098 · doi:10.1002/num.20116
[5]Boyd, J.P.: Chebyshev polynomial expantions for simultaneous approximation of two branches of a function with application to the one-dimensional Bratu equation. Appl. Math. Comput. 142, 189–200 (2003) · Zbl 1025.65042 · doi:10.1016/S0096-3003(02)00345-4
[6]Frank-Kamenetski, D.A.: Diffusion and Heat Exchange in Chemical Kinetics. Princeton University Press, Princeton, NJ (1995)
[7]Caglar, H., Caglar, N., Özer, M., Anagnostopoulos, A.N.: B-spline method for solving Bratu’ problem. J. Comput. Math. 87(8), 1885–1891 (2010)
[8]Deeba, E., Khuri, S.A., Xie, S.: An algorithm for solving boundary value problems. J. Comput. Phys. 159, 125–138 (2000) · Zbl 0959.65091 · doi:10.1006/jcph.2000.6452
[9]Khuri, S.A.: A new approach to Bratu’s problem. Appl. Math. Comput. 147, 131–136 (2004) · Zbl 1032.65084 · doi:10.1016/S0096-3003(02)00656-2
[10]Wazwaz, A.M.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005) · Zbl 1073.65068 · doi:10.1016/j.amc.2004.06.059
[11]Syam, M.I., Hamdan, A.: An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704–713 (2006) · Zbl 1093.65108 · doi:10.1016/j.amc.2005.10.021
[12]Li, S., Liao, S.J.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854–865 (2005) · Zbl 1151.35354 · doi:10.1016/j.amc.2004.09.066
[13]Aregbesola, Y.A.S.: Numerical solution of Bratu problem using the method of weighted residual. Electron. J. South Afr. Math. Sci. 3(1), 1–7 (2003)
[14]Hassan, I.H.A.H., Erturk, V.S.: Applying differential transformation method to the one-dimensional planar Bratu problem. Int. J. Contemp. Math. Sci. 2, 1493–1504 (2007)
[15]He, J.H.: Some asymptotic methods for strongly nonlinear equations. Internat. J. Modern Phys. B 20(10), 1141–1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[16]He, J.H.: Variational approach to the Bratu’s problem. J. Phys.: Conf. Ser. 96, 012087 (2008) · doi:10.1088/1742-6596/96/1/012087
[17]Mohsen, A., Sedeek, L.F., Mohamed, S.A.: New smoother to enhance multigridbased methods for Bratu problem. Appl. Math. Comput. 204, 325–339 (2008) · Zbl 1154.65344 · doi:10.1016/j.amc.2008.06.058
[18]Batiha, B.: Numerical solution of Bratu-type equations by the variational iteration method. Hacet. J. Math. Stat. 39, 23–29 (2010)
[19]Stenger, F.: A Sinc-Galerkin method of solution of boundary value problems. J. Math. Comput. 33, 85–109 (1979)
[20]Stenger, F.: Handbook of Sinc Numerical Methods. CRC Press (2010)
[21]Lund, J.: Symmetrization of the Sinc-Galerkin method for boundary value problems. J. Math. Comput. 47, 571–588 (1986) · doi:10.1090/S0025-5718-1986-0856703-9
[22]El-Gamel, M., Zayed, A.I.: Sinc-Galerkin method for solving nonlinear boundary value problems. J. Comput. Math. Appl. 48, 1285–1298 (2004) · Zbl 1072.65111 · doi:10.1016/j.camwa.2004.10.021
[23]Mohsen, A., El-Gamel, M.: On the Galerkin and collocation methods for two-point boundary value problems using sinc bases. J. Comput. Math. Appl. 56, 930–941 (2008) · Zbl 1155.65365 · doi:10.1016/j.camwa.2008.01.023
[24]Stenger, F.: Numerical Method Based on Sinc and Analytic Functions. Springer, New York (1993)
[25]Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia, PA (1992)
[26]Stenger, F.: Summary of sinc numerical methods. J. Comput. Appl. Math. 121, 379–42 (2000) · Zbl 0964.65010 · doi:10.1016/S0377-0427(00)00348-4