zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A Godunov-mixed finite element method on changing meshes for the nonlinear Sobolev equations. (English) Zbl 1259.65152
Summary: A Godunov-mixed finite element method on changing meshes is presented to simulate the nonlinear Sobolev equations. The convection term of the nonlinear Sobolev equations is approximated by a Godunov-type procedure and the diffusion term by an expanded mixed finite element method. The method can simultaneously approximate the scalar unknown and the vector flux effectively, reducing the continuity of the finite element space. Almost optimal error estimates in L 2 -norm under very general changes in the mesh can be obtained. Finally, a numerical experiment is given to illustrate the efficiency of the method.
MSC:
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
35Q35PDEs in connection with fluid mechanics
65M06Finite difference methods (IVP of PDE)
65M15Error bounds (IVP of PDE)