zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation results for fourth-order nonlinear dynamic equations. (English) Zbl 1260.34168

From the introduction: This work is concerned with oscillation of a fourth-order nonlinear dynamic equation

(px Δ 3 ) Δ (t)+q(t)f(x(σ(t)))=0

on an arbitrary time scale 𝕋 with sup𝕋=.

MSC:
34N05Dynamic equations on time scales or measure chains
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
References:
[1]Bohner, Martin; ; Peterson, Allan: Dynamic equations on time scales, an introduction with applications, (2001)
[2]Bohner, Martin; Peterson, Allan: Advances in dynamic equations on time scales, (2003)
[3]Hilger, Stefan: Analysis on measure chains–a unified approach to continuous and discrete calculus, Results math. 18, 18-56 (1990) · Zbl 0722.39001
[4]Agarwal, Ravi P.; Bohner, Martin; Saker, Samir H.: Oscillation of second order delay dynamic equations, Can. appl. Math. Q. 13, 1-17 (2005) · Zbl 1126.39003
[5]Agarwal, Ravi P.; O’regan, Donal; Saker, Samir H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations, J. math. Anal. appl. 300, 203-217 (2004) · Zbl 1062.34068 · doi:10.1016/j.jmaa.2004.06.041
[6]Akin-Bohner, Elvan; Bohner, Martin; Saker, Samir H.: Oscillation criteria for a certain class of second order Emden–Fowler dynamic equations, Electron. trans. Numer. anal. 27, 1-12 (2007) · Zbl 1177.34047 · doi:emis:journals/ETNA/vol.27.2007/pp1-12.dir/pp1-12.html
[7]Erbe, Lynn; Peterson, Allan; Saker, Samir H.: Hille and Nehari type criteria for third-order dynamic equations, J. math. Anal. appl. 329, 112-131 (2007) · Zbl 1128.39009 · doi:10.1016/j.jmaa.2006.06.033
[8]Grace, Said R.; Bohner, Martin; Sun, Shurong: Oscillation of fourth-order dynamic equations, Hacet. J. Math. stat. 39, 545-553 (2010) · Zbl 1228.34145
[9]Li, Tongxing; Thandapani, Ethiraju; Tang, Shuhong: Oscillation theorems for fourth-oder delay dynamic equations on time scales, Bull. math. Anal. appl. 3, 190-199 (2011)
[10]Şahiner, Yeter: Oscillation of second-order delay differential equations on time scales, Nonlinear anal. TMA 63, 1073-1080 (2005) · Zbl 1224.34294 · doi:10.1016/j.na.2005.01.062
[11]Saker, Samir H.: Oscillation of nonlinear dynamic equations on time scales, Appl. math. Comput. 148, 81-91 (2004) · Zbl 1045.39012 · doi:10.1016/S0096-3003(02)00829-9
[12]Saker, Samir H.: Oscillation theory of dynamic equations on time scales, (2010)