zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Response to the comments on “design of sliding mode controller for a class of fractional-order chaotic systems” [Commun nonlinear sci numer simulat 2012;17:356-66]. (English) Zbl 1261.93030
Summary: This paper is a response to the comments on the paper of M. P. Aghababa [”Comments on “Design of sliding mode controller for a class of fractional-order chaotic systems” [Commun nonlinear sci numer simulat 17 (2012) 356-366], Commun. Nonlinear Sci. Numer. Simul. 17, No. 3, 1485-1488 (2012; Zbl 1248.93037)]. The following scripts are to address and discuss the comments.
MSC:
93B12Variable structure systems
34A08Fractional differential equations
37N35Dynamical systems in control
References:
[1]Aghababa, M. P.: Comments on ”design of sliding mode controller for a class of fractional-order chaotic systems”, Commun nonlinear sci numer simul 17, 1485-1488 (2012)
[2]Yin, C.; Zhong, S. M.; Chen, W. F.: Design of sliding mode controller for a class of fractional-order chaotic systems, Commun nonlinear sci numer simul 17, 356-366 (2012)
[3]Aghababa, M. P.: Robust stabilization and synchronization of a class of fractional-order chaotic systems via a novel fractional sliding mode controller, Commun nonlinear sci numer simul 17, 2670-2681 (2012)
[4]Aghababa MP. Finite-time chaos control and synchronization of fractional-order nonautonomous chaotic (hyperchaotic) systems using fractional nonsingular terminal sliding mode technique. Nonlinear Dynam. doi: http://dx.doi.org/10.1007/s11071-011-0261-6.
[5]Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G.: Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Commun nonlinear sci numer simul 16, 2853-2868 (2011) · Zbl 1221.93131 · doi:10.1016/j.cnsns.2010.09.038
[6]Aghababa, M. P.; Khanmohammadi, S.; Alizadeh, G.: Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique, Appl math model 35, 3080-3091 (2011) · Zbl 1219.93023 · doi:10.1016/j.apm.2010.12.020
[7]Zhang, R.; Yang, S.: Adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear dynam 66, 831-837 (2011)
[8]Razmjou EG, Ranjbar A, Rahmani Z, Ghaderi R. Robust synchronization and parameter identification of fractional-order unified chaotic system. In: Third conference on nonlinear science and complexity, Ankara, Turkey; 2010.
[9]Si-Ammour, A.; Djennoune, S.; Bettaye, M.: A sliding mode control for linear fractional system with input and state delays, Commun nonlinear sci numer simul 14, 2310-2318 (2009) · Zbl 1221.93048 · doi:10.1016/j.cnsns.2008.05.011
[10]Balochian, S.; Sedigh, A. K.; Zare, A.: Stabilization of multi-input hybrid fractional-order systems with state delay, ISA trans 50, 21-27 (2011)
[11]Dadras, S.; Momeni, H. R.: Control of a fractional-order economical system via sliding mode, Physica A 389, 2434-2442 (2010)
[12]Aghababa, M. P.: Comments on adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear dynam 66, 839-842 (2011)
[13]Zhang, R.; Yang, S.: Response to the comments on adaptive synchronization of fractional-order chaotic systems via a single driving variable, Nonlinear dynam 66, 843-844 (2011)