zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear state-observer control for projective synchronization of a fractional-order hyperchaotic system. (English) Zbl 1263.34011
Summary: In this paper, we consider an observer-based control approach for manipulating projective synchronization of nonlinear systems in high dimensional. Based on the stability theory of the fractional-order dynamical system, a nonlinear state observer is designed which can achieve projective synchronization in a class of high dimensional fractional-order hyperchaotic systems without restriction of partial-linearity and calculating the Lyapunov index of system. Simulation studies are included to demonstrate the effectiveness and feasibility of the proposed approach and synthesis procedures.
34A08Fractional differential equations
34C28Complex behavior, chaotic systems (ODE)
34H05ODE in connection with control problems
[1]Pecora, L., Carroll, T.: Synchronization in chaotic systems. Phys. Rev. Lett. 64(8), 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Chen, G.R., Lai, D.: Anticontrol of chaos via feedback. Int. J. Bifurc. Chaos 8, 1585–1590 (1998) · Zbl 0941.93522 · doi:10.1142/S0218127498001236
[3]Ge, S.S., Wang, C., Lee, T.H.: Adaptive backstepping control of a class of chaotic systems. Int. J. Bifurc. Chaos 10(5), 1149–1156 (2000)
[4]Wang, C., Ge, S.S.: Adaptive synchronization of uncertain chaotic systems via backstepping design. Chaos Solitons Fractals 12(7), 1199–1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[5]Liu, L., Liu, C.X., Zhang, Y.B.: Theoretical analysis and circuit implementation of a novel complicated hyperchaotic system. Nonlinear Dyn. 66(4), 707–715 (2011) · Zbl 1245.34059 · doi:10.1007/s11071-011-9943-3
[6]Liu, L., Liu, C.X., Zhang, Y.B.: Analysis of a novel four-dimensional hyperchaotic system. Chin. J. Phys. 46(4), 386–393 (2008)
[7]Meng, J., Wang, X.Y.: Nonlinear observer based phase synchronization of chaotic systems. Phys. Lett. A 369(4), 294–298 (2007) · Zbl 1209.34076 · doi:10.1016/j.physleta.2007.04.102
[8]Hu, M.F., Xu, Z.Y.: A general scheme for Q-S synchronization of chaotic systems. Nonlinear Anal. 69, 1091–1099 (2008) · Zbl 1153.34338 · doi:10.1016/j.na.2007.06.038
[9]Wang, X.Y., Meng, J.: Observer-based adaptive fuzzy synchronization for hyperchaotic systems. Chaos 18(3), 033102 (2008)
[10]Wang, X.Y., Song, J.M.: Synchronization of the fractional order hyperchaos lorenz systems with activation feedback control. Commun. Nonlinear Sci. Numer. Simul. 14(8), 3351–3357 (2009) · Zbl 1221.93091 · doi:10.1016/j.cnsns.2009.01.010
[11]Lin, D., Wang, X.Y.: Observer-based decentralized fuzzy neural sliding mode control for interconnected unknown chaotic systems via network structure adaptation. Fuzzy Sets Syst. 161(15), 2066–2080 (2010) · Zbl 1194.93065 · doi:10.1016/j.fss.2010.03.006
[12]Caputo, M.: Linear model of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 179, 529–539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[13]Caputo, M., Mainardi, F.: A new dissipaton model based on memory mechanism. Pure Appl. Geophys. 91(8), 134–147 (1971) · Zbl 1213.74005 · doi:10.1007/BF00879562
[14]Oldham, K., Hardcover, S.J.: The Fractional Calculus, p. 168. Academic Press, San Diego (1974)
[15]Lavoie, J.L., Osler, T.J., Tremblay, R.: Fractional derivatives and special functions. SIAM Rev. 18(2), 240–268 (1976) · Zbl 0324.44002 · doi:10.1137/1018042
[16]Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[17]Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36, 31–52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[18]Hartley, T., Lorenzo, C., Qammer, H.: Chaos in a fractional order Chua’s system. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42(8), 485–490 (1995) · doi:10.1109/81.404062
[19]Wajdi, M.: Hyperchaos in fractional order nonlinear systems. Chaos Solitons Fractals 26(5), 1459–1465 (2005) · Zbl 1100.37017 · doi:10.1016/j.chaos.2005.03.031
[20]Lu, J.J., Liu, C.X.: Realization of fractional-order Liu chaotic system by circuit. Chin. Phys. B 16(6), 1586–1590 (2007) · doi:10.1088/1009-1963/16/6/016
[21]Liu, C.X., Liu, L.: Circuit implementation of a new hyperchaos in fractional-order system. Chin. Phys. B 17(8), 2829–2837 (2008) · doi:10.1088/1674-1056/17/8/014
[22]Liu, L., Liu, C.X., Zhang, Y.B.: Experimental verification of a four-dimensional Chua’s system and its fractional order chaotic attractors. Int. J. Bifurc. Chaos 19(8), 2473–2486 (2009) · Zbl 1175.34061 · doi:10.1142/S0218127409024256
[23]Yu, Y., Li, H., Wang, S., Yu, J.: Dynamic analysis of a fractional-order Lorenz chaotic system. Chaos Solitons Fractals 42(2), 1181–1189 (2009) · Zbl 1198.37063 · doi:10.1016/j.chaos.2009.03.016
[24]Lu, J.: Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons Fractals 26(4), 1125–1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[25]Deng, W.: Generalized synchronization in fractional order systems. Phys. Rev. E 75(5), 201–207 (2007)
[26]Wang, X.Y., Wang, M.J.: Dynamic analysis of the fractional order Liu system and its synchronization. Chaos 17(3), 033106 (2007)
[27]Tavazoei, M.S., Haeri, M.: Synchronization of chaotic fractional-order systems via active sliding mode controller. Physica A 387(1), 57–70 (2008) · doi:10.1016/j.physa.2007.08.039
[28]Zhou, S.B., Li, H., Zhu, Z.Z.: Chaos control and synchronization in a fractional neuron network system. Chaos Solitons Fractals 36(4), 973–984 (2006)
[29]Wu, X., Lu, H., Shen, S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. A 373(27), 2329–2337 (2009) · Zbl 1231.34091 · doi:10.1016/j.physleta.2009.04.063
[30]Mainieri, R., Pehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. Rev. Lett. 82(15), 3042–3045 (1999) · doi:10.1103/PhysRevLett.82.3042
[31]Xu, D.L.: Control of projective synchronization in chaotic systems. Phys. Rev. E 63(2), 027201 (2001) · doi:10.1146/annurev.physiol.63.1.1
[32]Xu, D.L., Chee, C.Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. Rev. E 66, 046218 (2002)
[33]Li, G.H.: Generalized projective synchronization of two chaotic systems by using active control. Chaos Solitons Fractals 30(1), 77–82 (2006) · Zbl 1144.37372 · doi:10.1016/j.chaos.2005.08.130
[34]Wen, G.l., Xu, D.l.: Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. Chaos Solitons Fractals 26(1), 71–77 (2005) · Zbl 1122.93311 · doi:10.1016/j.chaos.2004.09.117
[35]Chen, X.R., Liu, C.X., Li, Y.X.: Nonlinear observer based full-state projective synchronization for a class of fractional-order chaotic system. Acta Phys. Sin. 57(3), 1453–1457 (2008)
[36]Wang, X.Y., He, Y.J.: Projective synchronization of fractional order chaotic system based on linear separation. Phys. Lett. A 372(4), 435–441 (2008) · Zbl 1217.37035 · doi:10.1016/j.physleta.2007.07.053
[37]Cao, J., Daniel, W., Yang, Y.: Projective synchronization of a class of delayed chaotic systems via impulsive control. Phys. Lett. A 373(35), 3128–3133 (2009) · Zbl 1233.34017 · doi:10.1016/j.physleta.2009.06.056
[38]Wang, X.Y., Nian, F.Z., Guo, G.: High precision fast projective synchronization in chaotic (hyperchaotic) systems. Phys. Lett. A 373(20), 1754–1761 (2009) · Zbl 1229.34081 · doi:10.1016/j.physleta.2009.03.025
[39]Wang, X.Y., Fan, B.: Generalized projective synchronization of a class of hyperchaotic systems based on state observer. Commun. Nonlinear Sci. Numer. Simul. 17(2), 953–963 (2012) · doi:10.1016/j.cnsns.2011.06.016
[40]Wang, Z.L.: Projective synchronization of hyperchaotic Lu system and Liu system. Nonlinear Dyn. 59(3), 455–462 (2010) · Zbl 1183.70055 · doi:10.1007/s11071-009-9552-6
[41]Wu, X.J., Wang, H.: A new chaotic system with fractional order and its projective synchronization. Nonlinear Dyn. 61(3), 407–417 (2010) · Zbl 1204.37035 · doi:10.1007/s11071-010-9658-x