zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Samuel multiplicities and Browder spectrum of operator matrices. (English) Zbl 1264.47011
In this paper, the authors use Samuel multiplicities to characterize the sets C(K,H) σ ab (M C ), C(K,H) σ sb (M C ) and C(K,H) σ b (M C ), where σ ab (·), σ sb (·) and σ b (·) are the upper semi-Browder spectrum, the lower semi-Browder spectrum and the Browder spectrum, respectively; here, M C =AC0B denotes an upper triangular operator matrix acting on the Hilbert space HK. They also present a revised version of Theorem 8 in [X. Fang, Adv. Math. 186, No. 2, 411–437 (2004; Zbl 1070.47007)].
MSC:
47A10Spectrum and resolvent of linear operators
47A53(Semi-)Fredholm operators; index theories