zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Exponential synchronization for complex dynamical networks with sampled-data. (English) Zbl 1264.93013
Summary: This paper is concerned with the problem of exponential synchronization for a kind of Complex Dynamical Networks (CDNs) with time-varying coupling delay and sampled-data. The sampling period considered here is assumed to be time-varying but bounded. A newly exponential synchronization condition is provided by using the Lyapunov method. Based on the condition, a set of sampled-data synchronization controllers is designed in terms of the solution of Linear Matrix Inequalities (LMIs) that can be solved effectively by using available software. The derived results are theoretically and numerically proved to be less conservative than the existing results. Two numerical examples are introduced to show the effectiveness and improvement of the given results.
93A15Large scale systems
93C57Sampled-data control systems
93C15Control systems governed by ODE
[1]Li, C.; Chen, G.: Synchronization in general complex dynamical networks with coupling delays, Physica A 343, 263-278 (2004)
[2]Lu, J.; Ho, D. W. C.: Globally exponential synchronization and synchronizability for general dynamical networks, IEEE transactions on systems, man, and cybernetics, part bcybernetics 40, 350-361 (2010)
[3]Wang, Z.; Wang, Y.; Liu, Y.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays, IEEE transactions on neural networks 21, 11-25 (2010)
[4]Wang, Y.; Xiao, J.; Wang, H. O.: Global synchronization of complex dynamical networks with network failures, International journal of robust and nonlinear control 20, 1667-1677 (2010) · Zbl 1204.93061 · doi:10.1002/rnc.1537
[5]Cao, J.; Li, P.; Wei, W.: Global synchronization in arrays of delayed neural networks with constant and delayed coupling, Physics letters A 353, 318-325 (2006)
[6]Lu, J.; Ho, D. W. C.; Cao, J.: A unified synchronization criterion for impulsive dynamical networks, Automatica 46, 1215-1221 (2010) · Zbl 1194.93090 · doi:10.1016/j.automatica.2010.04.005
[7]Lee, T. H.; Park, Ju H.; Ji, D.; Kwon, O. M.; Lee, S. M.: Guaranteed cost synchronization of a complex dynamical network via dynamic feedback control, Applied mathematics and computation 218, 6469-6481 (2012)
[8]Zhou, W.; Wang, T.; Mou, J.; Fang, J.: Mean square exponential synchronization in Lagrange sense for uncertain complex dynamical networks, Journal of the franklin institute 349, 1267-1282 (2012)
[9]Xu, Y.; Zhou, W.; Fang, J.; Sun, W.; Pan, L.: Topology identification and adaptive synchronization of uncertain complex networks with non-derivative and derivative coupling, Journal of the franklin institute 347, 1566-1576 (2010) · Zbl 1202.93023 · doi:10.1016/j.jfranklin.2010.07.007
[10]Park, M. J.; Kwon, O. M.; Park, Juh.; Lee, S. M.; Cha, E. J.: Synchronization criteria for coupled stochastic neural networks with time-varying delays and leakage delay, Journal of the franklin institute 348, 1699-1720 (2012)
[11]Huang, C.; Ho, D. W. C.; Lu, J.: Synchronization analysis of a complex network family, Nonlinear analysisreal world applications 11, 1933-1945 (2010) · Zbl 1188.93009 · doi:10.1016/j.nonrwa.2009.04.016
[12]Shen, B.; Wang, Z.; Liu, X.: Bounded H synchronization and state estimation for discrete time-varying stochastic complex networks over a finite-horizon, IEEE transactions on neural networks 22, 145-157 (2010)
[13]Shi, P.: Robust filtering for uncertain delay systems under sampled measurements, Signal processing 58, 131-151 (1996) · Zbl 0901.93068 · doi:10.1016/S0165-1684(97)00019-4
[14]Fridman, E.; Seuret, A.; Richard, J. P.: Robust sampled-data stabilization of linear systemsan input delay approach, Automatica 40, 1441-1446 (2004) · Zbl 1072.93018 · doi:10.1016/j.automatica.2004.03.003
[15]Liu, M.; You, J.; Ma, X.: H filtering for sampled-data stochastic systems with limited capacity channel, Signal processing 91, 1826-1837 (2010) · Zbl 1217.93167 · doi:10.1016/j.sigpro.2011.02.006
[16]Wen, J.; Liu, F.; Nguang, S. K.: Sampled-data predictive control for uncertain jump systems with partly unknown jump rates and time-varying delay, Journal of the franklin institute 349, 305-322 (2012)
[17]Gao, H.; Wu, J.; Shi, P.: Robust sampled-data H control with stochastic sampling, Automatica 45, 1729-1736 (2009) · Zbl 1184.93039 · doi:10.1016/j.automatica.2009.03.004
[18]Li, N.; Zhang, Y.; Hu, J.; Nie, Z.: Synchronization for general complex dynamical networks with sampled-data, Neurocomputing 74, 805-811 (2011)
[19]Wang, Z.; Liu, Y.; Liu, X.: H filtering for uncertain stochastic time-delay systems with sector-bounded nonlinearities, Automatica 44, 1268-1277 (2008)
[20]Shu, Z.; Lam, J.: Exponential estimates and stabilization of uncertain singular systems with discrete and distributed delays, International journal of control 81, 865-882 (2008) · Zbl 1152.93462 · doi:10.1080/00207170701261986
[21]Shao, H.: New delay-dependent stability criteria for systems with interval delay, Automatica 45, 744-749 (2009) · Zbl 1168.93387 · doi:10.1016/j.automatica.2008.09.010
[22]Liu, Y.; Wang, Z.; Liu, X.: Global exponential stability of generalized recurrent neural networks with discrete and distributed delays, Neural networks 19, 667-675 (2006) · Zbl 1102.68569 · doi:10.1016/j.neunet.2005.03.015