zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A generalized fractional sub-equation method for fractional differential equations with variable coefficients. (English) Zbl 1266.34014
Summary: In this Letter, a generalized fractional sub-equation method is proposed for solving fractional differential equations with variable coefficients. Being concise and straightforward, this method is applied to the space-time fractional Gardner equation with variable coefficients. As a result, many exact solutions are obtained including hyperbolic function solutions, trigonometric function solutions and rational solutions. It is shown that the considered method provides a very effective, convenient and powerful mathematical tool for solving many other fractional differential equations in mathematical physics.
MSC:
34A08Fractional differential equations
35R11Fractional partial differential equations
References:
[1]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[2]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[3]West, B. J.; Bolognab, M.; Grigolini, P.: Physics of fractal operators, (2003)
[4]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[5]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[6]Podlubny, I.: Fractional differential equations, (1999)
[7]Li, C.; Chen, A.; Ye, J.: J. comput. Phys., J. comput. Phys. 230, 3352 (2011)
[8]Cui, M.: J. comput. Phys., J. comput. Phys. 228, 7792 (2009)
[9]Huang, Q.; Huang, G.; Zhan, H.: Adv. water resour., Adv. water resour. 31, 1578 (2008)
[10]Momani, S.; Odibat, Z.; Erturk, V.: Phys. lett. A, Phys. lett. A 370, 379 (2007)
[11]Odibat, Z.; Momani, S.: Appl. math. Lett., Appl. math. Lett. 21, 194 (2008)
[12]Hu, Y.; Luo, Y.; Lu, Z.: J. comput. Appl. math., J. comput. Appl. math. 215, 220 (2008)
[13]El-Sayed, A. M. A.; Gaber, M.: Phys. lett. A, Phys. lett. A 359, 175 (2006)
[14]El-Sayed, A. M. A.; Behiry, S. H.; Raslan, W. E.: Comput. math. Appl., Comput. math. Appl. 59, 1795 (2010)
[15]He, J. H.: Commun. nonlinear sci. Numer. simul., Commun. nonlinear sci. Numer. simul. 2, 235 (1997)
[16]Odibat, Z.; Momani, S.: Comput. math. Appl., Comput. math. Appl. 58, 2199 (2009)
[17]Inc, M.: J. math. Anal. appl., J. math. Anal. appl. 345, 476 (2008)
[18]Wu, G.; Lee, E. W. M.: Phys. lett. A, Phys. lett. A 374, 2506 (2010)
[19]He, J. H.: Comput. methods appl. Mech. engrg., Comput. methods appl. Mech. engrg. 178, 257 (1999)
[20]He, J. H.: Int. J. Nonlinear mech., Int. J. Nonlinear mech. 35, 37 (2000)
[21]Zhang, S.; Zhang, H.: Phys. lett. A, Phys. lett. A 375, 1069 (2011)
[22]Wang, M.: Phys. lett. A, Phys. lett. A 199, 169 (1995)
[23]Jumarie, G.: Comput. math. Appl., Comput. math. Appl. 51, 1367 (2006)
[24]Jumarie, G.: J. appl. Math. comput., J. appl. Math. comput. 24, 31 (2007)
[25]Jumarie, G.: Appl. math. Lett., Appl. math. Lett. 23, 1444 (2010)
[26]Guo, S.; Mei, L.; Li, Y.; Sun, Y.: Phys. lett. A, Phys. lett. A 376, 407 (2012)
[27]Zhang, L. H.; Dong, L. H.; Yan, L. M.: Appl. math. Comput., Appl. math. Comput. 203, 784 (2008)
[28]Wei, L.: Appl. math. Comput., Appl. math. Comput. 217, 1632 (2010)
[29]Fu, Z.; Liu, S.; Liu, S.: Chaos solitons fractals, Chaos solitons fractals 20, 301 (2004)
[30]Xu, G.; Li, Z.; Liu, Y.: Chinese J. Phys., Chinese J. Phys. 41, No. 3, 232 (2003)
[31]Yan, Z.: MM res., MM res. 22, 363 (2003)
[32]Baldwin, D.; Goktas, U.; Hereman, W.; Hong, L.; Martino, R. S.; Miller, J. C.: J. symb. Comput., J. symb. Comput. 37, 669 (2004)
[33]Hereman, W.; Nuseir, A.: Math. comput. Simul., Math. comput. Simul. 43, 13 (1997)