zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. (English) Zbl 1266.49065
Summary: In this paper, we seek the conjugate gradient direction closest to the direction of the scaled memoryless BFGS method and propose a family of conjugate gradient methods for unconstrained optimization. An improved Wolfe line search is also proposed, which can avoid a numerical drawback of the original Wolfe line search and guarantee the global convergence of the conjugate gradient method under mild conditions. To accelerate the algorithm, we introduce adaptive restarts along negative gradients based on the extent to which the function approximates some quadratic function during previous iterations. Numerical experiments with the CUTEr collection show that the proposed algorithm is promising.
MSC:
49M37Methods of nonlinear programming type in calculus of variations
90C30Nonlinear programming