zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reversed version of a generalized sharp Hölder’s inequality and its applications. (English) Zbl 1266.94012
Author’s abstract: We give a reversed version of a generalized sharp Hölder inequality which is due to Wu. The results are then used to improve Beckenbach’s inequality and Minkowski’s inequality. Moreover, as an application in information theory, we present a refinement of Singh’s inequality which is a generalized Shannon inequality.
94A15General topics of information theory
26D15Inequalities for sums, series and integrals of real functions
[1]Agahi, H.; Mesiar, R.; Ouyang, Y.: General Minkowski type inequalities for sugeno integrals, Fuzzy sets and systems 161, 708-715 (2010) · Zbl 1183.28027 · doi:10.1016/j.fss.2009.10.007
[2]Agahi, H.; Mesiar, R.; Ouyang, Y.: New general extensions of Chebyshev type inequalities for sugeno integrals, International journal of approximate reasoning 51, 135-140 (2009) · Zbl 1196.28026 · doi:10.1016/j.ijar.2009.09.006
[3]Agahi, H.; Mesiar, R.; Ouyang, Y.: Further developments of Chebyshev type inequalities for sugeno integral integrals and T-(S-)evaluators, Kybernetika 46, 83-95 (2009) · Zbl 1188.28014 · doi:http://www.kybernetika.cz/content/2010/1/83
[4]Agahi, H.; Román-Flores, H.; Flores-Franulic&breve, A.; : General Barnes – godunova – levin type inequalities for sugeno integrals, Information sciences 181, No. 6, 1072-1079 (2011)
[5]Agahi, H.; Yaghoobi, M. A.: A Minkowski type inequality for fuzzy integrals, Journal of uncertain systems 4, 187-194 (2010)
[6]Aldaz, J. M.: A stability version of hölder’s inequality, Journal of mathematical analysis and applications 343, 842-845 (2008) · Zbl 1138.26308 · doi:10.1016/j.jmaa.2008.01.104
[7]Beckenbach, E. F.: A class of mean-value functions, The American mathematical monthly 57, 1-6 (1950) · Zbl 0035.15704 · doi:10.2307/2305163
[8]Beckenbach, E. F.; Bellman, R.: Inequalities, (1983)
[9]Bourin, J. -C.; Lee, E. -Y.; Fujii, M.; Seo, Y.: A matrix reverse hölder inequality, Linear algebra and its applications 431, 2154-2159 (2009) · Zbl 1179.15021 · doi:10.1016/j.laa.2009.07.010
[10]Chen, T. -Y.; Li, C. -H.: Determining objective weights with intuitionistic fuzzy entropy measures: a comparative analysis, Information sciences 180, No. 21, 4207-4222 (2010)
[11]Chen, B.; Zhu, Y.; Hu, J.; Príncipe, J. C.: Delta-entropy: definition, properties and applications in system identification with quantized data, Information sciences 181, No. 7, 1384-1402 (2011) · Zbl 1227.93125 · doi:10.1016/j.ins.2010.11.037
[12]Dehmer, M.; Mowshowitz, A.: A history of graph entropy measures, Information sciences 181, No. 1, 57-78 (2011) · Zbl 1204.94050 · doi:10.1016/j.ins.2010.08.041
[13]Flores-Franulič, A.; Román-Flores, H.: A Chebyshev type inequality for fuzzy integrals, Applied mathematics and computation 190, 1178-1184 (2007) · Zbl 1129.26021 · doi:10.1016/j.amc.2007.02.143
[14]Fujii, M.; Lee, E. -Y.; Seo, Y.: A difference counterpart to a matrix hölder inequality, Linear algebra and its applications 432, No. 10, 2565-2571 (2010) · Zbl 1189.15028 · doi:10.1016/j.laa.2009.12.002
[15]Gavalec, M.; Zimmermann, K.: Duality of optimization problems with generalized fuzzy relation equation and inequality constraints, Information sciences (2011)
[16]Golshani, L.; Pasha, E.: Rényi entropy rate for Gaussian processes, Information sciences 180, No. 8, 1486-1491 (2010) · Zbl 1185.60034 · doi:10.1016/j.ins.2009.12.012
[17]Hardy, G. H.; Littlewood, J. E.; Pólya, G.: Inequalities, (1952) · Zbl 0047.05302
[18]Haber, R. E.; Del Toro, R. M.; Gajate, A.: Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process, Information sciences 180, No. 14, 2777-2792 (2010)
[19]Hu, K.: On an inequality and its applications, Scientia sinica 24, No. 8, 1047-1055 (1981)
[20]Khrennikov, A.: Nonlocality as well as rejection of realism are only sufficient(butnon-necessary!)conditions for violation of Bell’s inequality, Information sciences 179, 492-504 (2009) · Zbl 1165.81302 · doi:10.1016/j.ins.2008.08.021
[21]Kuang, J.: Applied inequalities, (2010)
[22]Kwon, E. G.; Bae, E. K.: On a continuous form of hölder inequality, Journal of mathematical analysis and applications 343, No. 1, 585-592 (2008) · Zbl 1138.26314 · doi:10.1016/j.jmaa.2008.01.057
[23]Li, Y.; Wu, H.: Global stability analysis in Cohen – Grossberg neural networks with delays and inverse hölder neuron activation functions, Information sciences 180, No. 20, 4022-4030 (2010) · Zbl 1195.93124 · doi:10.1016/j.ins.2010.06.033
[24]Lu, J.; Wu, K.; Lin, J.: Fast full search in motion estimation by hierarchical use of Minkowski’s inequality, Pattern recognition 31, 945-952 (1998)
[25]Małyszko, D.; Stepaniuk, J.: Adaptive multilevel rough entropy evolutionary thresholding, Information sciences 180, No. 7, 1138-1158 (2010)
[26]Mesiar, R.; Mesiarová, A.: Fuzzy integrals and linearity, International journal of approximate reasoning 47, 352-358 (2008) · Zbl 1183.28034 · doi:10.1016/j.ijar.2007.05.013
[27]Mesiar, R.; Ouyang, Y.: General Chebyshev type inequalities for sugeno integrals, Fuzzy sets and systems 160, 58-64 (2009) · Zbl 1183.28035 · doi:10.1016/j.fss.2008.04.002
[28]Mitrinović, D. S.; Pečarić, J. E.; Fink, A. M.: Classical and new inequalities in analysis, (1993) · Zbl 0771.26009
[29]Mond, B.; Pečarić, J. E.: On converses of hölder and Beckenbach inequalities, Journal of mathematical analysis and applications 196, 795-799 (1995) · Zbl 0857.26007 · doi:10.1006/jmaa.1995.1443
[30]Ouyang, Y.; Mesiar, R.: On the Chebyshev type inequality for seminormed fuzzy integral, Applied mathematics letters 22, 1810-1815 (2009) · Zbl 1185.28026 · doi:10.1016/j.aml.2009.06.024
[31]Ouyang, Y.; Mesiar, R.: Sugeno integral and the comonotone commuting property, International journal of uncertainty, fuzziness and knowledge-based systems 17, 465-480 (2009) · Zbl 1178.28031 · doi:10.1142/S0218488509006091
[32]Ouyang, Y.; Mesiar, R.; Agahi, H.: An inequality related to Minkowski type for sugeno integrals, Information sciences 180, 2793-2801 (2010) · Zbl 1193.28016 · doi:10.1016/j.ins.2010.03.018
[33]Ouyang, Y.; Mesiar, R.; Li, J.: On the comonotonic-&z.star;-property for sugeno integral, Applied mathematics and computation 211, 450-458 (2009)
[34]Özkan, U. M.; Sarikaya, M. Z.; Yildirim, H.: Extensions of certain integral inequalities on time scales, Applied mathematics letters 21, 993-1000 (2008) · Zbl 1168.26316 · doi:10.1016/j.aml.2007.06.008
[35]Pap, E.; Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral, Information sciences 180, 543-548 (2010) · Zbl 1183.26039 · doi:10.1016/j.ins.2009.10.014
[36]A. Renyi, On measures of entropy and information, in: Proceedings of the Fourth Berkeley Symposium Mathematical Statistics and Probability, vol. 1, 1961, pp. 547 – 561.
[37]Román-Flores, H.; Flores-Franulič, A.; Chalco-Cano, Y.: The fuzzy integral for monotone functions, Applied mathematics and computation 185, 492-498 (2007) · Zbl 1116.26024 · doi:10.1016/j.amc.2006.07.066
[38]Román-Flores, H.; Flores-Franulič, A.; Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals, Information sciences 177, 3192-3201 (2007) · Zbl 1127.28013 · doi:10.1016/j.ins.2007.02.006
[39]Singh, R. P.; Kumar, Rajeev; Tuteja, R. K.: Application of hölder’s inequality in information theory, Information sciences 152, 145-154 (2003) · Zbl 1042.94007 · doi:10.1016/S0020-0255(02)00300-6
[40]Tian, J. -F.: Inequalities and mathematical properties of uncertain variables, Fuzzy optimization and decision making 10, 357-368 (2011)
[41]Wong, F. -H.; Yeh, C. -C.; Yu, S. -L.; Hong, C. -H.: Young’s inequality and related results on time scales, Applied mathematics letters 18, 983-988 (2005) · Zbl 1080.26025 · doi:10.1016/j.aml.2004.06.028
[42]Wu, S.: Generalization of a sharp hölder’s inequality and its application, Journal of mathematical analysis and applications 332, 741-750 (2007) · Zbl 1120.26024 · doi:10.1016/j.jmaa.2006.10.019
[43]Wu, S.: A new sharpened and generalized version of hölder’s inequality and its applications, Applied mathematics and computation 197, No. 2, 708-714 (2008) · Zbl 1142.26018 · doi:10.1016/j.amc.2007.08.006
[44]Xie, H. -B.; Zheng, Y. -P.; Guo, J. -Y.; Chen, X.: Cross-fuzzy entropy: a new method to test pattern synchrony of bivariate time series, Information sciences 180, 1715-1724 (2010)
[45]Yang, W.: A functional generalization of diamond-α integral hölder’s nequality on time scales, Applied mathematics letters 23, 1208-1212 (2010) · Zbl 1196.26038 · doi:10.1016/j.aml.2010.05.013
[46]Zarezadeh, S.; Asadi, M.: Results on residual Rényi entropy of order statistics and record values, Information sciences 180, No. 21, 4195-4206 (2010) · Zbl 1204.94054 · doi:10.1016/j.ins.2010.06.019