zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hardy spaces, regularized BMO spaces and the boundedness of Calderón-Zygmund operators on non-homogeneous spaces. (English) Zbl 1267.42013
Summary: One defines a non-homogeneous space (X,μ) as a metric space equipped with a non-doubling measure μ so that the volume of the ball with center x, radius r has an upper bound of the form r n for some n>0. The aim of this paper is to study the boundedness of Calderón-Zygmund singular integral operators T on various function spaces on (X,μ) such as the Hardy spaces, the L p spaces, and the regularized BMO spaces. This article thus extends the work of X. Tolsa [Math. Ann. 319, No. 1, 89–149 (2001; Zbl 0974.42014)] on the non-homogeneous space ( n ,μ) to the setting of a general non-homogeneous space (X,μ). Our framework of the non-homogeneous space (X,μ) is similar to that of T. Hytönen [Publ. Mat., Barc. 54, No. 2, 485–504 (2010; Zbl 1246.30087)] and we are able to obtain quite a few properties similar to those of Calderón-Zygmund operators on doubling spaces such as the weak type (1,1) estimate, boundedness from the Hardy space into L 1 , boundedness from L into the regularized BMO, and an interpolation theorem. Furthermore, we prove that the dual space of the Hardy space is the regularized BMO space, obtain a Calderón-Zygmund decomposition on the non-homogeneous space (X,μ), and use this decomposition to show the boundedness of the maximal operators in the form of a Cotlar inequality as well as the boundedness of commutators of Calderón-Zygmund operators and BMO functions.

MSC:
42B20Singular and oscillatory integrals, several variables
42B35Function spaces arising in harmonic analysis
References:
[1]Bui, T.A., Duong, X.T.: Endpoint estimates for maximal operator and boundedness of maximal commutators. Preprint
[2]Coifman, R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977) · Zbl 0358.30023 · doi:10.1090/S0002-9904-1977-14325-5
[3]Di Fazio, G., Gutiérrez, C.E., Lanconelli, E.: Covering theorems, inequalities on metric spaces and applications to PDE’s. Math. Ann. 341(2), 255–291 (2008) · Zbl 1149.46029 · doi:10.1007/s00208-007-0188-x
[4]Heinonen, J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)
[5]Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344(1), 37–116 (2009) · Zbl 1162.42012 · doi:10.1007/s00208-008-0295-3
[6]Hytönen, T.: A framework for non-homogenous analysis on metric spaces, and RBMO spaces of Tolsa. Preprint (2011)
[7]Hytönen, T., Martikainen, H.: Non-homogeneous Tb theorem and random dyadic cubes on metric measure spaces. Preprint
[8]Hytönen, T., Yang, D., Yang, D.: The Hardy space H 1 on non-homogeneous metric spaces. Preprint
[9]Journé, J.-L.: Calderón–Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983)
[10]Nazarov, F., Treil, S., Volberg, A.: Cauchy integral and Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 15, 703–726 (1997) · Zbl 0889.42013 · doi:10.1155/S1073792897000469
[11]Nazarov, F., Treil, S., Volberg, A.: Weak type estimates and Cotlar inequalities for Calderón–Zygmund operators on nonhomogeneous spaces. Int. Math. Res. Not. 9, 463–487 (1998) · Zbl 0918.42009 · doi:10.1155/S1073792898000312
[12]Nazarov, F., Treil, S., Volberg, A.: The Tb-theorem on non-homogeneous spaces. Acta Math. 190(2), 151–239 (2003) · Zbl 1065.42014 · doi:10.1007/BF02392690
[13]Mateu, J., Mattila, P., Nicolau, A., Orobitg, J.: BMO for non doubling measures. Duke Math. J. 102, 533–565 (2000) · Zbl 0964.42009 · doi:10.1215/S0012-7094-00-10238-4
[14]Tchoundja, E.: Carleson measures for the generalized Bergman spaces via a T(1)-type theorem. Ark. Mat. 46(2), 377–406 (2008) · Zbl 1159.32004 · doi:10.1007/s11512-008-0070-4
[15]Tolsa, X.: BMO, H 1, and Calderón–Zygmund operators for non doubling measures. Math. Ann. 319, 89–149 (2001) · doi:10.1007/PL00004432
[16]Tolsa, X.: A proof of the weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón–Zygmund decomposition. Publ. Mat. 45, 163–174 (2001) · Zbl 0980.42012 · doi:10.5565/PUBLMAT_45101_07
[17]Verdera, J.: On the T(1) theorem for the Cauchy integral. Ark. Mat. 38, 183–199 (2000) · Zbl 1039.42011 · doi:10.1007/BF02384497
[18]Volberg, A., Wick, B.D.: Bergman-type singular operators and the characterization of Carleson measures for Besov–Sobolev spaces on the complex ball. Preprint arXiv: 0910.1142 (2009)