zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lagrange identity method for microstretch thermoelastic materials. (English) Zbl 1267.74053
Summary: Our paper is concerned with some basic theorems for microstretch thermoelastic materials. By using the Lagrange identity, we prove the uniqueness theorem and some continuous dependence theorems without recourse to any energy conservation law, or to any boundedness assumptions on the thermoelastic coefficients. Moreover, we avoid the use of positive definiteness assumptions on the thermoelastic coefficients.
MSC:
74H25Uniqueness of solutions for dynamical problems in solid mechanics
74E10Anisotropy
74F05Thermal effects in solid mechanics
74M25Micromechanics
References:
[1]Brun, L.: Méthodes énergétiques dans LES systémes évolutifs linéaires, J. mecanique 8, 167-192 (1969) · Zbl 0194.26104
[2]Ciarletta, M.: On the bending of microstretch elastic plates, Internat. J. Engrg. sci. 37, 1309-1318 (1995) · Zbl 1210.74108 · doi:10.1016/S0020-7225(98)00123-2
[3]Eringen, A. C.: Theory of micromorphic materials with memory, Internat. J. Engrg. sci. 10, 623-641 (1972) · Zbl 0241.73116 · doi:10.1016/0020-7225(72)90089-4
[4]Eringen, A. C.: Theory of thermo-microstretch elastic solids, Internat. J. Engrg. sci. 28, 1291-1301 (1990) · Zbl 0718.73014 · doi:10.1016/0020-7225(90)90076-U
[5]Eringen, A. C.: Microcontinuum field theories, (1999)
[6]Green, A. E.; Laws, N.: On the entropy production inequality, Arch. ration. Mech. anal. 45, 47-59 (1972)
[7]Iesan, D.; Pompei, A.: Equilibrium theory of microstretch elastic solids, Internat. J. Engrg. sci. 33, 399-410 (1995) · Zbl 0899.73461 · doi:10.1016/0020-7225(94)00067-T
[8]Iesan, D.; Nappa, L.: Extension and bending of microstretch elastic cylinders, Internat. J. Engrg. sci. 33, 1139-1151 (1995) · Zbl 0899.73066 · doi:10.1016/0020-7225(94)00123-2
[9]Iesan, D.; Quintanilla, R.: Thermal stresses in microstretch bodies, Internat. J. Engrg. sci. 43, 885-907 (2005) · Zbl 1211.74146 · doi:10.1016/j.ijengsci.2005.03.005
[10]Marin, M.: On the non-linear theory of micropolar bodies with voids, J. appl. Math. 2007, 1-11 (2007) · Zbl 1141.74007 · doi:10.1155/2007/15745
[11]Marin, M.: On the minimum principle for dipolar materials with stretch, Nonlinear anal. Real world appl. 10, 1572-1578 (2009) · Zbl 1160.74002 · doi:10.1016/j.nonrwa.2008.02.001
[12]Wilkes, N. S.: Continuous dependence and instability in linear thermoelasticity, SIAM J. Appl. math. 11, 292-299 (1980) · Zbl 0433.73013 · doi:10.1137/0511027