zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of recurrent neural networks with mixed time-delays via output coupling with delayed feedback. (English) Zbl 1267.93138
Summary: This paper deals with the synchronization control problem for the recurrent neural networks with discrete and distributed delays. By introducing an improved Lyapunov-Krasovskii functional and employing convex combination approach, a delay-dependent output feedback controller is derived to achieve synchronization with the help of a master-slave concept and linear matrix inequality approach. Moreover, the activation functions are assumed to be of more general descriptions, which generalize and improve many of those existing methods. It is worth noting that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed explicitly. Finally, numerical results and its simulations are given to show the effectiveness of the derived results.
MSC:
93D15Stabilization of systems by feedback
93C15Control systems governed by ODE
34D06Synchronization
92B20General theory of neural networks (mathematical biology)
34K25Asymptotic theory of functional-differential equations
References:
[1]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]Chen, G., Dong, X.: From Chaos to Order. World Scientific, (1998)
[3]Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) · Zbl 1215.93127 · doi:10.1007/s11071-010-9800-9
[4]Akhavan, A., Samsudin, A., Akhshani, A.: A symmetric image encryption scheme based on combination of nonlinear chaotic maps. J. Franklin Inst. 348, 1797–1813 (2011) · doi:10.1016/j.jfranklin.2011.05.001
[5]Li, C., Li, Y.: Fast and robust image segmentation by small-world neural oscillator networks. Cogn. Neurodyn. 5, 209–220 (2011) · doi:10.1007/s11571-011-9152-2
[6]Yoshida, H., Kurata, S., Li, Y., Nara, S.: Chaotic neural network applied to two-dimensional motion control. Cogn. Neurodyn. 4, 69–80 (2010) · doi:10.1007/s11571-009-9101-5
[7]Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469, 93–153 (2008) · doi:10.1016/j.physrep.2008.09.002
[8]Civalleri, P.P., Gilli, M: On stability of cellular neural networks. J. VLSI Signal Process. 23, 429–435 (1999) · doi:10.1023/A:1008109505419
[9]Civalleri, P.P., Gilli, M: On dissipative two-state quantum cells and cellular networks. Int. J. Circuit Theory Appl. 32, 79–90 (2004) · Zbl 1050.81006 · doi:10.1002/cta.262
[10]Gilli, M.: Strange attractors in delayed cellular neural networks. IEEE Trans. Circuits Syst. I 40, 849–853 (1993) · Zbl 0844.58056 · doi:10.1109/81.251826
[11]Li, X.: Existence and global exponential stability of periodic solution for delayed neural networks with impulsive and stochastic effects. Neurocomputing 73, 749–758 (2010) · doi:10.1016/j.neucom.2009.10.016
[12]Li, X., Rakkiyappan, R., Balasubramaniam, P.: Existence and global stability analysis of equilibrium of fuzzy cellular neural networks with time delay in the leakage term under impulsive perturbations. J. Franklin Inst. 348, 135–155 (2011) · Zbl 1241.92006 · doi:10.1016/j.jfranklin.2010.10.009
[13]Balasubramaniam, P., Vembarasan, V., Rakkiyappan, R.: Delay-dependent robust exponential state estimation of Markovian jumping fuzzy Hopfield neural networks with mixed random time-varying delays. Commun. Nonlinear Sci. Numer. Simul. 16, 2109–2129 (2011) · Zbl 1221.93254 · doi:10.1016/j.cnsns.2010.08.024
[14]Lu, H.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2002) · Zbl 0995.92004 · doi:10.1016/S0375-9601(02)00538-8
[15]Zou, F., Nossek, J.A.: A chaotic attractor with cellular neural networks. IEEE Trans. Circuits Syst. I(38), 811–812 (1991) · doi:10.1109/31.135755
[16]Kwon, O.M., Park, J.H., Lee, S.M., Won, S.C.: LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback. J. Optim. Theory Appl. 128, 103–117 (2006) · Zbl 1121.93025 · doi:10.1007/s10957-005-7560-3
[17]Kwon, O.M., Park, J.H.: Guaranteed cost control for uncertain large-scale systems with time-delays via delayed feedback. Chaos Solitons Fractals 27, 800–812 (2006) · Zbl 1094.93020 · doi:10.1016/j.chaos.2005.04.053
[18]Kwon, O.M., Park, J.H.: On decentralized guaranteed cost control for uncertain large scale systems with delays in subsystem interconnection using delayed feedback. J. Optim. Theory Appl. 129, 391–414 (2006) · doi:10.1007/s10957-006-9075-y
[19]Zhu, Q., Cao, J.: Stability of Markovian jump neural networks with impulse control and time varying delays. Nonlinear Anal., Real World Appl. 13, 2259–2270 (2012) · Zbl 1254.93157 · doi:10.1016/j.nonrwa.2012.01.021
[20]Zhu, Q., Cao, J.: Stability analysis of Markovian jump stochastic BAM neural networks with impulse control and mixed time delays. IEEE Trans. Neural Netw. Learning Syst. 23, 467–479 (2012) · doi:10.1109/TNNLS.2011.2182659
[21]Zhu, Q., Cao, J.: Exponential stability of stochastic neural networks with both Markovian jump parameters and mixed time delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41, 341–353 (2011)
[22]Zhu, Q., Cao, J.: Robust exponential stability of Markovian jump impulsive stochastic Cohen–Grossberg neural networks with mixed time delays. IEEE Trans. Neural Netw. 21, 1314–1325 (2010) · doi:10.1109/TNN.2010.2054108
[23]Zhu, Q., Li, X., Yang, X.: Exponential stability for stochastic reaction–diffusion BAM neural networks with time-varying and distributed delays. Appl. Comput. Math. 217, 6078–6091 (2011) · Zbl 1210.35308 · doi:10.1016/j.amc.2010.12.077
[24]Yu, W., Chen, G., Lü, J.: On pinning synchronization of complex dynamical networks. Automatica 45, 429–435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016
[25]Sun, W., Wang, R., Wang, W., Cao, J.: Analyzing inner and outer synchronization between two coupled discrete-time networks with time delays. Cogn. Neurodyn. 4, 225–231 (2010) · doi:10.1007/s11571-010-9118-9
[26]Liu, X., Cao, J.: Local synchronization of one-to-one coupled neural networks with discontinuous activations. Cogn. Neurodyn. 5, 13–20 (2011) · doi:10.1007/s11571-010-9132-y
[27]Zhu, Q., Cao, J.: Adaptive synchronization of chaotic Cohen–Grossberg neural networks with mixed time delays. Nonlinear Dyn. 61, 517–534 (2010) · Zbl 1204.93064 · doi:10.1007/s11071-010-9668-8
[28]Tang, Y., Qiu, R., Fang, A., Miao, Q.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays. Phys. Lett. A 372, 4425–4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[29]Zhu, Q., Cao, J.: Adaptive synchronization under almost every initial data for stochastic neural networks with time varying delays and distributed delays. Commun. Nonlinear Sci. Numer. Simul. 16, 2139–2159 (2011) · Zbl 1221.93247 · doi:10.1016/j.cnsns.2010.08.037
[30]Zhu, Q., Cao, J.: pth moment exponential synchronization for stochastic delayed Cohen–Grossberg neural networks with Markovian switching. Nonlinear Dyn. 67, 829–845 (2012) · Zbl 1242.93126 · doi:10.1007/s11071-011-0029-z
[31]Yang, Y., Cao, J.: Exponential lag synchronization of a class of chaotic delayed neural networks with impulsive effects. Physica A 386, 492–502 (2007) · doi:10.1016/j.physa.2007.07.049
[32]He, W., Qian, F., Cao, J., Han, Q.L.: Impulsive synchronization of two nonidentical chaotic systems with time-varying delay. Phys. Lett. A 375, 498–504 (2011) · Zbl 1241.93025 · doi:10.1016/j.physleta.2010.11.052
[33]Balasubramaniam, P., Chandran, R., Theesar, S.J.S.: Synchronization of chaotic nonlinear continuous neural networks with time-varying delay. Cogn. Neurodyn. 5, 361–371 (2011) · doi:10.1007/s11571-011-9162-0
[34]Cheng, C.-J., Liao, T.-L., Hwang, C.-C.: Exponential synchronization of a class of chaotic neural networks. Chaos Solitons Fractals 24, 197–206 (2005)
[35]Cui, B., Lou, X.: Synchronization of chaotic recurrent neural networks with time-varying delays using nonlinear feedback control. Chaos Solitons Fractals 39, 288–294 (2009) · Zbl 1197.93135 · doi:10.1016/j.chaos.2007.01.100
[36]Gan, Q., Xu, R., Kang, X.: Synchronization of chaotic neural networks with mixed time delays. Commun. Nonlinear Sci. Numer. Simul. 16, 966–974 (2011) · Zbl 1221.93222 · doi:10.1016/j.cnsns.2010.04.036
[37]Gao, X., Zhong, S., Gao, F.: Exponential synchronization of neural networks with time-varying delays. Nonlinear Anal. 71, 2003–2011 (2009) · Zbl 1173.34349 · doi:10.1016/j.na.2009.01.243
[38]Huang, H., Feng, G.: Synchronization of nonidentical chaotic neural networks with time delays. Neural Netw. 22, 869–874 (2009) · doi:10.1016/j.neunet.2009.06.009
[39]Li, T., Fei, S.-M., Zhang, K.-J.: Synchronization control of recurrent neural networks with distributed delays. Physica A 387, 982–996 (2008) · doi:10.1016/j.physa.2007.10.010
[40]Li, T., Fei, S.-M., Zhu, Q., Cong, S.: Exponential synchronization of chaotic neural networks with mixed delays. Neurocomputing 71, 3005–3019 (2008) · doi:10.1016/j.neucom.2007.12.029
[41]Li, T., Song, A.-G., Fei, S.-M., Guo, Y.-Q.: Synchronization control of chaotic neural networks with time-varying and distributed delays. Nonlinear Anal. 71, 2372–2384 (2009) · Zbl 1171.34049 · doi:10.1016/j.na.2009.01.079
[42]Li, X., Bohner, M.: Exponential synchronization of chaotic neural networks with mixed delays and impulsive effects via output coupling with delay feedback. Math. Comput. Model. 52, 643–653 (2010) · Zbl 1202.34128 · doi:10.1016/j.mcm.2010.04.011
[43]Li, X., Ding, C., Zhu, Q.: Synchronization of stochastic perturbed chaotic neural networks with mixed delays. J. Franklin Inst. 347, 1266–1280 (2010) · Zbl 1202.93057 · doi:10.1016/j.jfranklin.2010.06.001
[44]Li, X., Fu, X.: Synchronization of chaotic delayed neural networks with impulsive and stochastic perturbations. Commun. Nonlinear Sci. Numer. Simul. 16, 885–894 (2011) · Zbl 1221.93225 · doi:10.1016/j.cnsns.2010.05.025
[45]Song, Q.: Design of controller on synchronization of chaotic neural networks with mixed time-varying delays. Neurocomputing 72, 3288–3295 (2009) · doi:10.1016/j.neucom.2009.02.011
[46]Park, J.H., Kwon, O.M.: Guaranteed cost control of time-delay chaotic systems. Chaos Solitons Fractals 27, 1011–1018 (2006) · Zbl 1102.37305 · doi:10.1016/j.chaos.2005.04.076
[47]Yu, W., Cao, J.: Synchronization control of stochastic delayed neural networks. Physica A 373, 252–260 (2007) · doi:10.1016/j.physa.2006.04.105
[48]Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. SIAM, Philadelphia (1994)
[49]Kwon, O.M., Park, J.H., Lee, S.M.: An improved delay-dependent criterion for asymptotic stability of uncertain dynamic systems with time-varying delays. J. Optim. Theory Appl. 145, 343–353 (2010) · Zbl 1201.93107 · doi:10.1007/s10957-009-9637-x
[50]Gu, K., Kharitonov, L., Chen, J.: Stability of Time-Delay Systems. Birkhäuser, Boston (2003)
[51]Park, P.G., Ko, J.W., Jeong, C.: Reciprocally convex approach to stability of systems with time-varying delays. Automatica 47, 235–238 (2011) · Zbl 1209.93076 · doi:10.1016/j.automatica.2010.10.014