zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Transient chaos in fractional Bloch equations. (English) Zbl 1268.34009
34A08Fractional differential equations
34H10Chaos control (ODE)
[1]Abragam, A.: Principles of nuclear magnetism, (2002)
[2]Huang, S. Y.; Walls, J. D.; Warren, W. S.; Wang, Y. Y.: Signal irreproducibility in high-field solution magnetic resonance experiments caused by spin turbulence, J. chem. Phys. 121, 6105-6109 (2004)
[3]Hamri, N. E.; Houmor, T.: Chaotic dynamics of the fractional order nonlinear Bloch system, Electron. J. Theoret. phys. 8, 233-244 (2011)
[4]Abergel, D.: Chaotic solutions of the feedback driven Bloch equations, Phys. lett. A 302, 17-22 (2002) · Zbl 0997.82045 · doi:10.1016/S0375-9601(02)01079-4
[5]Park, J. H.: Chaos synchronization of nonlinear Bloch equations, Chaos solitons fractals 27, 357-361 (2006) · Zbl 1091.93029 · doi:10.1016/j.chaos.2005.03.047
[6]Jeener, J.: Dynamical effects of the dipolar field inhomogeneities in high-resolution NMR: spectral clustering and instabilites, Phys. rev. Lett. 82, 1772-1775 (1999)
[7]Ahn, C. K.: Chaos synchronization of nonlinear Bloch equations based on input-to-state stable control, Commun. theor. Phys. 53, 308-312 (2010) · Zbl 1223.93105 · doi:10.1088/0253-6102/53/2/20
[8]Milonni, P. W.; Ackerhalt, J. R.; Shih, M. L.: Routes to chaos in the Maxwell–Bloch equations, Opt. commun. 53, 133-136 (1985)
[9]Liang, Z. P.; Lauterbur, P. C.: Principles of magnetic resonance imaging: A signal processing perspective, (2000)
[10]Magin, R. L.; Abdullah, O.; Baleanu, D.; Zhou, X. H. J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch–torrey equation, J. magn. Reson. 190, No. 2, 255-270 (2008)
[11]Magin, R. L.; Feng, X.; Baleanu, D.: Solving the fractional order Bloch equation, Concepts magn. Reson. part A 34A, No. 1, 16-23 (2009)
[12]Callaghan, P. T.: Principles of nuclear magnetic resonance microscopy, (2004)
[13]Magin, R. L.: Fractional calculus in bioengineering, (2006)
[14]Mainardi, F.: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, (2010)
[15]Kärger, J.; Vojta, G.: On the use of NMR pulsed field-gradient spectroscopy for the study of anomalous diffusion in fractal networks, Chem. phys. Lett. 141, 411-413 (1987)
[16]Kärger, J.; Pfeifer, H.; Vojta, G.: Time correlation during anomalous diffusion in fractal systems and signal attenuation in NMR field-gradient spectroscopy, Phys. rev. A 37, 4514-4517 (1988)
[17]Widom, A.; Chen, H. J.: Fractal Brownian motion and nuclear spin echoes, J. phys. A 28, 1243-1247 (1998)
[18]Kimmich, R.: Strange kinetics, porous media, and NMR, Chem. phys. 284, 253-285 (2002)
[19]Sitnitsky, A. E.; Pimenov, G. G.; Anisimov, A. V.: Spin-lattice NMR relaxation by anomalous translational diffusion, J. magn. Reson. 172, No. 1, 48-55 (2005)
[20]Haacke, E. M.; Brown, R. W.; Thompson, M. R.; Venkatesan, R.: Magnetic resonance imaging: physical principles and sequence design, (1999)
[21]Bernstein, M. A.; King, K. F.; Zhou, X. J.: Handbook of MRI pulse sequences, (2004)
[22]Vlaardingerbroek, M. T.; Den Boer, J. A.: Magnetic resonance imaging, (1999)
[23]Bain, A. D.; Anand, C. K.; Nie, Z.: Exact solution to the Bloch equations and application to the Hahn echo, J. magn. Reson. 206, 227-240 (2010)
[24]Petras, I.: Modeling and numerical analysis of fractional-order Bloch equations, Comput. math. Appl. 53, 308-312 (2010)
[25]Bhalekar, S.; Daftardar-Gejji, V.; Baleanu, D.; Magin, R. L.: Fractional Bloch equation with delay, Comput. math. Appl. 61, No. 5, 1355-1365 (2011) · Zbl 1217.34123 · doi:10.1016/j.camwa.2010.12.079
[26]Podlubny, I.: Fractional differential equations, (1999)
[27]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[28]Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor–corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[29]Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Electron. trans. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071 · doi:emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[30]Diethelm, K.; Ford, N. J.: Analysis of fractional differential equations, J. math. Anal. appl. 265, 229-248 (2002) · Zbl 1014.34003 · doi:10.1006/jmaa.2001.7194
[31]Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer. algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[32]Tavazoei, M. S.: Comments on stability analysis of a class of nonlinear fractional-order systems, IEEE trans. Circuits syst. II 56, 519-520 (2009)
[33]Ford, N. J.; Connolly, J. A.: Comparison of numerical methods for fractional differential equations, Commun. pure appl. Anal. 5, 289-307 (2006) · Zbl 1133.65115 · doi:10.3934/cpaa.2006.5.289
[34]Tavazoei, M. S.; Haeri, M.: Regular oscillations or chaos in a fractional order system with any effective dimension, Nonlinear dynam. 54, No. 3, 213-222 (2008) · Zbl 1187.70043 · doi:10.1007/s11071-007-9323-1
[35]D. Matignon, Stability results for fractional differential equations with applications to control processing, in: Computational Engineering in Systems and Application Multiconference, IMACS, IEEE-SMC Proceedings, vol. 2, Lille, France, July 1996, pp. 963–968.
[36]Tavazoei, M. S.; Haeri, M.: Chaotic attractors in incommensurate fractional order systems, Physica D 237, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[37]Deng, W.; Li, C.; Lu, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dynam. 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[38]Tavazoei, M. S.; Haeri, M.: A necessary condition for double scroll attractor existence in fractional order systems, Phys. lett. A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[39]Chua, L. O.; Komuro, M.; Matsumoto, T.: The double-scroll family, IEEE trans. Circuits syst. 33, 1072-1118 (1986) · Zbl 0634.58015 · doi:10.1109/TCS.1986.1085869
[40]Silva, C. P.: Shil’nikov’s theorem–a tutorial, IEEE trans. Circuits syst. I 40, 675-682 (1993) · Zbl 0850.93352 · doi:10.1109/81.246142
[41]Cafagna, D.; Grassi, G.: New 3-D-scroll attractors in hyperchaotic Chua’s circuit forming a ring, Internat. J. Bifur. chaos 13, No. 10, 2889-2903 (2003) · Zbl 1057.37026 · doi:10.1142/S0218127403008284
[42]Lu, J.; Chen, G.; Yu, X.; Leung, H.: Design and analysis of multiscroll chaotic attractors from saturated function series, IEEE trans. Circuits syst. I 51, No. 12, 2476-2490 (2004)
[43]Daftardar-Gejji, V.; Bhalekar, S.: Chaos in fractional ordered Liu system, Comput. math. Appl. 59, 1117-1127 (2010) · Zbl 1189.34081 · doi:10.1016/j.camwa.2009.07.003
[44]Bhalekar, S.; Daftardar-Gejji, V.: Fractional ordered Liu system with delay, Commun. nonlinear sci. Numer. simul. 15, 2178-2191 (2010) · Zbl 1222.34005 · doi:10.1016/j.cnsns.2009.08.015
[45]S. Bhalekar, V. Daftardar-Gejji, D. Baleanu, R.L. Magin, Internat. J. Bifur. Chaos (2010) (in press) Article ID: IJBC-D-11-00086.