zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lag quasisynchronization of coupled delayed systems with parameter mismatch by periodically intermittent control. (English) Zbl 1268.34097
Summary: This paper further investigates the lag synchronization of coupled delayed systems with parameter mismatch. Different from the most existing results, we formulate the intermittent control system that governs the dynamics of the synchronization error. As a result of parameter mismatch, complete lag synchronization cannot be achieved. In this paper, a lag quasisynchronization scheme is proposed to ensure that coupled systems are in a state of lag synchronization with an error level. We estimate the error bound of lag synchronization by rigorously theoretical analysis. Numerical simulations are presented to verify the theoretical results.
MSC:
34D06Synchronization
93C23Systems governed by functional-differential equations
34C28Complex behavior, chaotic systems (ODE)
References:
[1]Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990) · doi:10.1103/PhysRevLett.64.821
[2]He, W., Cao, J.: Exponential synchronization of chaotic neural networks: a matrix measure approach. Nonlinear Dyn. 55(1), 55–65 (2009) · Zbl 1169.92300 · doi:10.1007/s11071-008-9344-4
[3]Rulkov, N.F., Sushchik, M.M., Tsimring, L.S.: Generalized synchronization of chaos in directionally coupled chaotic systems. Phys. Rev. E 51, 980–994 (1995) · doi:10.1103/PhysRevE.51.980
[4]Chen, S., Cao, J.: Projective synchronization of neural networks with mixed time-varying delays and parameter mismatch. Nonlinear Dyn. 67, 1397–1406 (2012) · Zbl 1242.93052 · doi:10.1007/s11071-011-0076-5
[5]Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76, 1804–1807 (1996) · doi:10.1103/PhysRevLett.76.1804
[6]Rosenblum, M.G., Pikovsky, A.S., Kurths, J.: From phase to lag synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 78, 4193–4196 (1997) · doi:10.1103/PhysRevLett.78.4193
[7]Masoller, C., Zanette, D.H.: Anticipated synchronization in coupled chaotic maps with delays. Physica A 300, 359–366 (2001) · Zbl 0973.37033 · doi:10.1016/S0378-4371(01)00362-4
[8]Zhang, Q.J., Lu, J.A.: Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. Phys. Lett. A 372, 1416–1421 (2008) · Zbl 1217.37037 · doi:10.1016/j.physleta.2007.09.051
[9]Shahverdiev, E.M., Sivaprakasam, S., Shore, K.A.: Lag synchronization in time-delayed systems. Phys. Lett. A 292, 320–324 (2002) · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[10]Li, C.D., Liao, X.F., Wong, K.: Chaotic lag synchronization of coupled time-delayed systems and its applications in secure communication. Physica D 194, 187–202 (2004) · Zbl 1059.93118 · doi:10.1016/j.physd.2004.02.005
[11]Zhou, J., Chen, T., Xiang, L.: Chaotic lag synchronization of coupled delayed neural networks and its applications in secure communication. Circuits Syst. Signal Process. 245, 99–613 (2005)
[12]Pourdehi, S., Karimipour, D., Karimaghaee, P.: Output-feedback lag-synchronization of time-delayed chaotic systems in the presence of external disturbances subjected to input on linearity. Chaos 21, 043128 (2011)
[13]Sun, Z.K., Yang, X.L.: Generating and enhancing lag synchronization of chaotic systems by white noise. Chaos 21, 033114 (2011)
[14]Hu, C., Yu, J., Jiang, H.J.: Exponential lag synchronization for neural networks with mixed delays via periodically intermittent control. Chaos 20, 023108 (2010)
[15]Han, Q., Li, C.D., Huang, J.J.: Estimation on error bound of lag synchronization of chaotic systems with time delay and parameter mismatch. J. Vib. Control 16, 1701–1711 (2010) · Zbl 1269.93040 · doi:10.1177/1077546309341601
[16]He, W.L., Qian, F., Han, Q.L., Cao, J.D.: Lag quasi-synchronization of coupled delayed systems with parameter mismatch. IEEE Trans. Circuits Syst. I, Regul. Pap. 58, 1345–1357 (2011) · doi:10.1109/TCSI.2010.2096116
[17]Wang, L.P., Yuan, Z.T., Chen, X.H., Zhou, Z.F.: Lag synchronization of chaotic systems with parameter mismatches. Commun. Nonlinear Sci. Numer. Simul. 16, 987–992 (2011) · Zbl 1221.37226 · doi:10.1016/j.cnsns.2010.04.029
[18]Li, C.D., Liao, X.F., Huang, T.W.: Exponential stabilization of chaotic systems with delay by periodically intermittent control. Chaos 17, 013103 (2007)
[19]Huang, T.W., Li, C.D., Liu, X.Z.: Synchronization of chaotic systems with delay using intermittent linear state feedback. Chaos 18, 033122 (2008)
[20]Cai, S.M., Hao, J.J., Liu, Z.R.: Exponential synchronization of chaotic systems with time-varying delays and parameter mismatches via intermittent control. Chaos 21, 023112 (2011)
[21]Boyd, S., Ghaoui, L., Feron, E.E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)
[22]Huang, T.W., Li, C.D., Yu, W.W., Chen, G.R.: Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback. Nonlinearity 22, 569–584 (2009) · Zbl 1167.34386 · doi:10.1088/0951-7715/22/3/004
[23]Lu, H.T.: Chaotic attractors in delayed neural networks. Phys. Lett. A 298, 109–116 (2002) · Zbl 0995.92004 · doi:10.1016/S0375-9601(02)00538-8