zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution for mixed convection boundary layer flow of a nanofluid along an inclined plate embedded in a porous medium. (English) Zbl 1268.76061
Summary: The steady mixed convection boundary layer flow of an incompressible nanofluid along a plate inclined at an angle α in a porous medium is studied. The resulting nonlinear governing equations with associated boundary conditions are solved using an optimized, robust, extensively validated, variational finite-element method (FEM) and a finite-difference method (FDM) with a local non-similar transformation. The Nusselt number is found to decrease with increasing Brownian motion number (Nb) or thermophoresis number (Nt), whereas it increases with increasing angle α. In addition, the local Sherwood number is found to increase with a rise in Nt, whereas it is reduced with an increase in Nb and angle α. The effects of Lewis number, buoyancy ratio, and mixed convection parameter on temperature and concentration distributions are also examined in detail. The present study is of immediate interest in next-generation solar film collectors, heat-exchanger technology, material processing exploiting vertical and inclined surfaces, geothermal energy storage, and all those processes which are greatly affected by a heat-enhancement concept.
MSC:
76S05Flows in porous media; filtration; seepage
76R10Free convection (fluid mechanics)
65M60Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (IVP of PDE)
76M10Finite element methods (fluid mechanics)
References:
[1]Yu, D. M.; Routbort, J. L.; Choi, S.: Review and comparison of nanofluid thermal conductivity and heat transfer enhancements, Heat transfer eng. 29, 432-460 (2008)
[2]Choi, S.: Enhancing thermal conductivity of fluids with nanoparticles, Developments and applications of non-Newtonian flows 231, MD-Vol. 66, 99-105 (1995)
[3]Masuda, H.; Ebata, A.; Teramae, K.; Hishinuma, N.: Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles, Netsu bussei (Japan) 7, No. 4, 227-233 (1993)
[4]Buongiorno, J.: Convective transport in nanofluids, ASME J. Heat transfer 128, 240-250 (2006)
[5]Das, S. K.; Choi, S.; Yu, W.; Pradeep, T.: Nanofluids: science and technology, (2007)
[6]Eastman, J.; Choi, S. U. S.; Lib, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivities of ethylene-glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, No. 6, 718-720 (2001)
[7]J. Buongiorno, W. Hu, Nanofluid coolants for advanced nuclear power plants, in: paper no. 5705, Proc. ICAPP ’05, Seoul, May 15–19, 2005.
[8]Kuznetsov, A. V.; Nield, D. A.: Natural convection boundary-layer of a nanofluid past a vertical plate, Int. J. Therm. sci. 49, 243-247 (2010)
[9]Nield, D. A.; Kuznetsov, A. V.: The cheng-minkowycz problem for natural convection boundary-layer flow in a porous medium saturated by a nanofluid, Int. J. Heat mass transfer 52, 5792-5795 (2009) · Zbl 1177.80046 · doi:10.1016/j.ijheatmasstransfer.2009.07.024
[10]Cheng, P.; Minkowycz, W. J.: Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike, J. geophys. Res. 82, 2040-2044 (1977)
[11]Khan, W. A.; Pop, I.: Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat mass transfer 53, 2477-2483 (2010) · Zbl 1190.80017 · doi:10.1016/j.ijheatmasstransfer.2010.01.032
[12]Tzou, D. Y.: Thermal instability of nanofluids in natural convection, Int. J. Heat mass transfer 51, 2967-2979 (2008) · Zbl 1143.80330 · doi:10.1016/j.ijheatmasstransfer.2007.09.014
[13]Tzou, D. Y.: Instability of nanofluids in natural convection, ASME J. Heat transfer 130, 1-9 (2008)
[14]Bachok, N.; Ishak, A.; Pop, I.: Boundary layer flow of nanofluid over a moving surface in a flowing fluid, Int. J. Therm. sci. 49, No. 9, 1663-1668 (2010)
[15]Polidori, G.; Fohanno, S.; Nguyen, C. T.: A note on heat transfer modelling of Newtonian nanofluids in laminar free convection, Int. J. Therm. sci. 46, 739-744 (2007)
[16]Ho, C. J.; Chen, M. W.; Li, Z. W.: Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity, Int. J. Heat mass transfer 51, 4506-4516 (2008) · Zbl 1144.80317 · doi:10.1016/j.ijheatmasstransfer.2007.12.019
[17]Putra, N.; Roetzel, W.; Das, S. K.: Natural convection of nano-fluids, Int. J. Heat mass transfer 39, 775-784 (2003)
[18]Jang, S. P.; Choi, S. U. S.: Cooling performance of a microchannel heat sink with nanofluids, Appl. therm. Eng. 26, 2457-2463 (2006)
[19]A.G.A. Nanna, T. Fistrovich, K. Malinski, S. Choi, Thermal transport phenomena in buoyancy-driven nanofluids, in: Proc. 2005 ASME Int. Mechanical Engineering Congress and RD&D Exposition, 15–17 November, Anaheim, California, USA, 2004.
[20]Lai, F. C.: Coupled heat and mass transfer by mixed convection from a vertical plate in a saturated porous medium, Int. commun. Heat mass transfer 18, 93-106 (1991)
[21]Bejan, A.; Khair, K. R.: Heat and mass transfer by natural convection in a porous medium, Int. J. Heat mass transfer 28, 909-918 (1985) · Zbl 0564.76085 · doi:10.1016/0017-9310(85)90272-8
[22]Lai, F. C.; Kulacki, F. A.: Coupled heat and mass transfer by natural convection from vertical surface in porous medium, Int. J. Heat mass transfer 34, 1189-1194 (1991)
[23]Murthy, P. V. S.N.; Singh, P.: Heat and mass transfer by natural convection in a non-darcian porous medium, Acta mech. 138, 243-254 (1999) · Zbl 0956.76088 · doi:10.1007/BF01291847
[24]Bég, O. Anwar; Takhar, H. S.; Bég, T. A.; Bhargava, R.; Rawat, S.: Nonlinear magneto-heat transfer in a fluid-particle suspension flowing via a non-darcian channel with heat source and buoyancy effects: numerical study, J. engrg. Sci. 19, No. 1, 63-88 (2008)
[25]Bhargava, R.; Sharma, R.; Bég, O. A.: Oscillatory chemically-reacting MHD free convection heat and mass transfer in a porous medium with Sorét and dufour effects: finite element modeling, Int. J. Appl. math. Mech. 5, No. 6, 15-37 (2009)
[26]Cheng, P.: Combined free and forced convection flow about inclined surfaces in porous media, Int. J. Heat mass transfer 20, 807-814 (1977) · Zbl 0387.76076 · doi:10.1016/0017-9310(77)90110-7
[27]Chamkha, Ali J.; Issa, Camille; Khanafer, Khalil: Natural convection from an inclined plate embedded in a variable porosity porous medium due to solar radiation, Int. J. Therm. sci. 41, 73-81 (2002)
[28]Alam, M. S.; Rahman, M. M.; Sattar, M. A.: Similarity solutions for hydromagnetic free convective heat and mass transfer flow along a semi-infinite permeable inclined flat plate with heat generation and thermophoresis, Nonlinear anal. Model. control 12, 433-445 (2007)
[29]Rahman, M. M.; Aziz, A.; Al-Lawatia, M. A.: Heat transfer in micropolar fluid along an inclined permeable plate with variable fluid properties, Int. J. Therm. sci. 49, 993-1002 (2010)
[30]Bég, O. Anwar; Takhar, H. S.; Bhargava, R.; Rawat, S.; Prasad, V. R.: Numerical study of heat transfer of a third grade viscoelastic fluid in non-darcian porous media with thermophysical effects, Phys. scr. 77, 1-11 (2008) · Zbl 1162.76052 · doi:10.1088/0031-8949/77/06/065402
[31]Reddy, J. N.: An introduction to the finite element method, (1985)
[32]Rana, P.; Bhargava, R.: Flow and heat transfer of a nanofluid over a nonlinearly stretching sheet: a numerical study, Comm. nonlinear sci. Numer. simulat. 17, No. 1, 212-226 (2012)
[33]Bég, O. Anwar; Bhargava, R.; Rashidi, M. M.: Numerical simulation in micropolar fluid dynamics: mathematical modelling of nonlinear flows of micropolar fluids, (2011)
[34]P. Keblinski, Nanofluids for enhanced thermal transport: understanding and controversy, in: Symposium II Nanoscale Heat Transport–From Fundamentals to Devices, Materials Research Society Spring Symposium, 10–13 April, San Francisco, USA, 2007.
[35]Ravi, P.; Bhattacharya, P.; Phelan, P. E.: Thermal conductivity of nanoscale colloidal solutions (Nanofluids), Phys. rev. Lett. 94, 25901-1-25901-4 (2005)
[36]Zueco, J.; Bég, O. Anwar; Takhar, H. S.; Prasad, V. R.: Thermophoretic hydromagnetic dissipative heat and mass transfer with lateral mass flux, heat source, ohmic heating and thermal conductivity effects: network simulation numerical study, Appl. therm. Eng. 29, 2808-2815 (2009)
[37]Goren, S. L.: Thermophoresis of aerosol particles into laminar boundary layer on a flat plate, J. colloid interface sci. 61, 77-85 (1977)
[38]Talbot, L.; Cheng, R. K.; Schefer, R. W.; Willis, D. R.: Thermophoresis of particles in a heated boundary layer, J. fluid mech. 101, 737-758 (1980)
[39]Bathe, K. J.: Finite element procedures, (1996)
[40]A. Lenert, Nanofluid-based receivers for high-temperature, high-flux direct solar collectors, MS Thesis, Dept. of Mechanical Engineering Massachusetts Institute of Technology, USA, 2010.
[41]T.A. Bég, O. Anwar Bég, M.M. Rashidi, M. Asadi, Homotopy semi-numerical modelling of transient nanofluid convection flow from an isothermal spherical body in a permeable regime: A hybrid solar collector, Nanoscale Res. Lett. (2011) (submitted for publication).