zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
State variables and transients of fractional order differential systems. (English) Zbl 1268.93040

Summary: Fractional order differentiation is generally considered as the basis of fractional calculus, but the real basis is in fact fractional order integration and particularly the fractional integrator, because definition and properties of fractional differentiation and of fractional differential systems rely essentially on fractional integration. We present the frequency distributed model of the fractional integrator and its finite dimension approximation. The simulation of FDSs, based on fractional integrators, leads to the definition of FDS internal state variables, which are the state variables of the fractional integrators, as a generalization of the integer order case.

The initial condition problem has been an open problem for a long time in fractional calculus. We demonstrate that the frequency distributed model of the fractional integrator provides a solution to this problem through the knowledge of its internal state. Beyond the solution of this fundamental problem, mastery of the integrator internal state allows the analysis and prediction of fractional differential system transients. Moreover, the finite dimension approximation of the fractional integrator provides an efficient technique for practical simulation of FDSs and analysis of their transients, with a particular insight into the interpretation of initial conditions, as illustrated by numerical simulations.

Laplace transform equations and initial conditions of the Caputo and the Riemann-Liouville derivatives are used to formulate the free responses of FDEs. Because usual equations are wrong, the corresponding free responses do not fit with real transients. We demonstrate that revised equations, including the initial state vector of the fractional integrator (used to perform differentiation) provide corrected free responses which match with real transients, as exhibited by numerical simulations.

MSC:
93B15Realizability of systems from input-output data
34A08Fractional differential equations
93C05Linear control systems
References:
[1]Manabe, S.: The non integer integral and its application to control systems, Journal of the institute of electrical engineers of Japan, 589-597 (1960)
[2]Oustaloup, A.: Systèmes asservis linéaires d’ordre fractionnaire, (1983)
[3]Oustaloup, A.: La commande CRONE, (1991)
[4]Oustaloup, A.; Mathieu, B.: La commande CRONE, du scalaire au multivariable, (1995)
[5]I. Podlubny, L. Dorcak, I. Kostial, On fractional derivatives, fractional order systems and PID control, in: Proc. of the Conference on Decision and Control, San Diego, 1997.
[6]Monje, C. A.; Chen, Yq; Vinagre, B. M.; Xue, D.; Feliu, V.: Fractional order systems and control, (2010)
[7]Caputo, M.: Elasticita e dissipazione, (1969)
[8]Chatterjee, A.: Statistical origins of fractional derivatives in viscoelasticity, Journal of sound and vibration 284, No. 3–5, 1239-1245 (2005)
[9]Retiere, N.; Ivanes, M.: Modeling of electrical machines by implicit derivative half-order systems, IEEE power engineering review, 62-64 (1998)
[10]A. Benchellal, Modélisation des interfaces de diffusion à l’aide d’opérateurs d’intégration fractionnaires. Thèse de doctorat, Université de Poitiers, France, 2008.
[11]Ortigueira, M. D.: On the initial conditions in continuous-time fractional linear systems, Signal processing 83, 2301-2309 (2003) · Zbl 1145.94367 · doi:10.1016/S0165-1684(03)00183-X
[12]M.D. Ortigueira, F.J. Coito, Initial conditions: what are we talking about? in: 3rd IFAC workshop, FDA’08, Ankara, Turkey, 5–7 November 2008.
[13]T.T. Hartley, C.F. Lorenzo, The error incurred in using the Caputo derivative Laplace transform, in: Proceedings of the ASME IDET-CIE Conferences San Diego, California, USA, 2009.
[14]C. Lorenzo, T. Hartley, Time-varying initialization and Laplace transform of the Caputo derivative: with order between zero and one, in: Proceedings of IDETC/CIE FDTA’2011 Conference, August 2011, Washington, DC, USA.
[15]Hartley, T. T.; Lorenzo, C. L.: Dynamics and control of initialized fractional order system, Nonlinear dynamics 29, 201-233 (2002) · Zbl 1021.93019 · doi:10.1023/A:1016534921583
[16]T.T. Hartley, C.F. Lorenzo, The initialization response of multi term linear fractional order systems with constant history functions, in: Proceedings of IDETC/CIE FDTA’2011 Conference, August 2011, Washington, DC, USA.
[17]C.F. Lorenzo, T.T. Hartley, Initialization in fractional order systems, in Proceedings of the European Control Conference, ECC’01, Porto, Portugal, 2001, pp. 1471–1476.
[18]Lorenzo, C. F.; Heartley, T. T.: Initialization of fractional order operators and fractional differential equations, ASME journal of computational and nonlinear dynamics 3, No. 2, 021101 (2008)
[19]T. Gambone, T.T. Hartley, J. Adams, R. Veillette, C. Lorenzo, An experimental validation of the initialisation response in fractional order systems, in: Proceedings of IDETC/CIE FDTA’2011 Conference, August 2011, Washington, DC, USA.
[20]J.C. Trigeassou, et al., Modelling and identification of a non integer order system, in: ECC’99 European Control Conference, KARLSRUHE, Germany, 1999.
[21]J.C. Trigeassou, N. Maamri, State-space modelling of fractional differential equations and the initial condition problem, in: IEEE SSD’09, Djerba, Tunisia, 2009.
[22]J.C. Trigeassou, N. Maamri, The initial conditions of Riemman–Liouville and Caputo derivatives: an integrator interpretation, in: FDA’2010 Conference, Badajoz, Spain, October 2010.
[23]Trigeassou, J. C.; Maamri, N.: Initial conditions and initialization of linear fractional differential equations, Signal processing 91, No. 3, 427-436 (2011) · Zbl 1203.94058 · doi:10.1016/j.sigpro.2010.03.010
[24]J. Sabatier, et al. On a representation of fractional order systems: interests for the initial condition problem, in: 3rd IFAC workshop, FDA’08, Ankara, Turkey, 5–7 November 2008.
[25]Sabatier, J.; Merveillaut, M.; Malti, R.; Oustaloup, A.: How to impose physically coherent initial conditions to a fractional system?, Communications in nonlinear science and numerical simulation 15, No. 5 (2010) · Zbl 1221.34019 · doi:10.1016/j.cnsns.2009.05.070
[26]J. Sabatier, M. Merveillaut, L. Feneteau, A. Oustaloup, On observability of fractional order systems, in: Proceedings of the ASME IDET-CIE Conferences San Diego, California, USA, 2009.
[27]J. Sabatier, C. Farges, M. Merveillaut, L. Feneteau, On observability and pseudo state estimation of fractional order system, European Journal of Control, 2012 (in press).
[28]Maolin Du, Zaihua Wang, Initialized fractional differential equations with Riemann–Liouville fractional order derivative, in: ENOC 2011 Conference, Rome, Italy, July 2011.
[29]Fukunaga, Masataka; Shimizu, Nobuyuki: Role of prehistories in the initial value problems of fractional viscoelastic equations, Nonlinear dynamics 38, No. 1–4, 207-220 (2004) · Zbl 1142.74310 · doi:10.1007/s11071-004-3756-6
[30]Das, S.: Functional fractional calculus, (2011)
[31]Poinot, T.; Trigeassou, J. C.: A method for modelling and simulation of fractional systems, Signal processing 83, 2319-2333 (2003) · Zbl 1145.94372 · doi:10.1016/S0165-1684(03)00185-3
[32]J. Lin, T. Poinot, J.C. Trigeassou, Parameter estimation of fractional systems: application to the modelling of a lead-acid battery, in: 12th IFAC Symposium on System Identification, SYSID 2000, USA, 2000.
[33]J. Lin, Modélisation et identification des systèmes d’ordre non entier, Thèse de doctorat, Université de Poitiers, France, 2001.
[34]J. Lin, T. Poinot, J.C. Trigeassou, Parameter estimation of fractional systems. Application to heat transfer, in: European Control Conference ECC 2001, Porto Portugal, 2001, pp. 2644–2649.
[35]T. Poinot, J.C. Trigeassou, Parameter estimation of fractional models: application to the modelling of diffusive systems, in: 15th IFAC World Congress, Barcelona, Spain, 2002.
[36]Trigeassou, J. C.; Maamri, N.; Sabatier, J.; Oustaloup, A.: A Lyapunov approach to the stability of fractional differentiel equations, Signal processing 91, No. 3, 437-445 (2011) · Zbl 1203.94059 · doi:10.1016/j.sigpro.2010.04.024
[37]J.C. Trigeassou, N. Maamri, A. Oustaloup, Initialization of Riemann–Liouville and Caputo fractional derivatives, in: Proceedings of IDETC/CIE FDTA’2011 Conference, Washington, DC, USA, August 2011.
[38]J.C. Trigeassou, N. Maamri, A. Oustaloup, Automatic initialization of the Caputo fractional derivative, in: CDC-ECC 2011, Orlando, USA, December 2011.
[39]J.C. Trigeassou, N. Maamri, J. Sabatier, A. Oustaloup, Transients of fractional order integrator and derivatives, ”Fractional Systems and Signals”, Signal, Image and Video Processing (2012) (special issue) (in press).
[40]Diethelm, K.: The analysis of fractional differential equations, Lecture notes in mathematics, 195-225 (2010)
[41]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[42]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[43]Oustaloup, A.: La dérivation non entière: théorie, synthèse et applications, (1995) · Zbl 0864.93004
[44]Podlubny, I.: Fractional differential equations, (1999)
[45]D. Matignon, Représentations en variables d’état de modèles de guides d’ondes avec dérivation fractionnaire. Thèse de Doctorat. Université de Paris XI, ORSAY, 1994.
[46]J.C. Trigeassou, A. Oustaloup, Fractional integration: a comparative analysis of fractional integrators, in: IEEE SSD’11, Sousse, Tunisia, 2011.
[47]D. Heleschewitz, D. Matignon, Diffusive realizations of fractional integro-differential operators: structural analysis under approximation. in: Conference IFAC, System, Structure and Control. Vol. 2, Nantes, France, July 1998, pp. 243-248.
[48]D. Helechewitz, Analyse et simulation de systèmes différentiels fractionnaires et pseudo-différentiels sous representation diffusive , thèse de doctorat, ENST Paris, 18 décembre 2000.
[49]G. Montseny, Diffusive representation of pseudo differential time operators, in: Proceedings ESSAIM, Vol 5, 1998, pp. 159–175. · Zbl 0916.93022 · doi:10.1051/proc:1998005 · doi:http://www.edpsciences.org/articles/proc/Vol.5/contents.htm
[50]Diethelm, K.; Ford, N. J.: Numerical solution of the bagley-torvik equation, Bit 42, No. 3, 490-507 (2002) · Zbl 1035.65067
[51]Diethelm, K.: An investigation of some non classical methods for the numerical approximation of Caputo-type fractional derivatives, Numerical algorithms 47, 361-390 (2008) · Zbl 1144.65017 · doi:10.1007/s11075-008-9193-8
[52]Tricaud, C.; Chen, Y. Q.: An approximated method for numerically solving fractional order optimal control problems of general form, Computers and mathematics with applications 59, 1644-1655 (2010) · Zbl 1189.49045 · doi:10.1016/j.camwa.2009.08.006
[53]Yuan, L.; Agrawal, O. P.: A numerical scheme for dynamic systems containing fractional derivatives, Journal of vibration and acoustics 124, No. 2, 321-324 (2002)
[54]Kailath, T.: Linear systems, (1980) · Zbl 0454.93001
[55]Thomson, W. (Lord Kelvin): Mechanical integration of the general linear differential equation of any order with variable coefficients, Prococeedings of the royal society 24, 271-275 (1876) · Zbl 08.0200.01 · doi:10.1098/rspl.1875.0036
[56]Owens, L.: Vannevar bush and the differential analyser: the text and context of an early computer, Technology and culture 27, No. 1, 63-95 (1986)
[57]Levine, L.: Methods for solving engineering problems using analog computers, (1964) · Zbl 1117.65300
[58]Petras, I.: Fractional order nonlinear systems: modelling, analysis and simulation, (2011)
[59]Ortigueira, M. D.: Fractional calculus for scientists and engineers, (2011)
[60]Agrawal, O. P.; Kumar, P.: Comparison of five numerical schemes for fractional differential equations, Advances in fractional calculus, 43-60 (2007) · Zbl 1128.65105 · doi:10.1007/978-1-4020-6042-7_4
[61]Li, Y.; Chen, Y. Q.; Podlubny, I.: Mittag Leffler stability of fractional order non linear dynamic systems, Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[62]Sadati, S. J.; Baleanu, D.; Ranjbar, A.; Ghaderi, R.; Abdeljawad, T.: Mittag Leffler stability theorem for fractional non linear systems with delay, Abstract and applied analysis 2010 (2010)
[63]Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional calculus and applied analysis 5, No. 4 (2002) · Zbl 1042.26003