zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of chaotic systems under sampled-data control. (English) Zbl 1268.93074
Summary: The problem of global asymptotical synchronization of chaotic Lur’e systems using sampled-data controller is considered in this paper. Sufficient conditions are obtained in terms of effective synchronization linear matrix inequality using a piecewise sawtooth structure of the sampling in time by constructing the new discontinuous Lyapunov functionals. The sampled-data feedback control gain is obtained from the derived condition. The Chua system and horizontal platform system are taken for numerical demonstration to show the effectiveness of the proposed condition.
MSC:
93C15Control systems governed by ODE
34D06Synchronization
93D30Scalar and vector Lyapunov functions
References:
[1]Yang, T., Chua, L.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 44, 976–988 (1997) · doi:10.1109/81.633887
[2]Yang, T., Chua, L.: Control of chaos using sampled-data feedback control. Int. J. Bifurc. Chaos 8, 2433–2438 (1998) · Zbl 0940.93048 · doi:10.1142/S0218127498001947
[3]Lam, H.K., Bingo, W.K.L.: Sampled-data fuzzy controller for continuous nonlinear systems. IET Control Theory Appl. 2, 32–39 (2008) · doi:10.1049/iet-cta:20070126
[4]Carroll, T., Pecora, L.: Synchronizing chaotic systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 38, 453–456 (1991)
[5]Curran, P., Suykens, J., Chua, L.: Absolute stability theory and master-slave synchronization. Int. J. Bifurc. Chaos 7, 2891–2896 (1997) · Zbl 0911.93044 · doi:10.1142/S0218127497001977
[6]Suykens, J., Curran, P., Chua, L.: Robust synthesis for master-slave synchronization of Lur’e systems. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 46, 841–850 (1999) · Zbl 1055.93549 · doi:10.1109/81.774230
[7]Yalcin, M., Suykens, J., Vandewalle, J.: Master-slave synchronization of Lur’e systems with time-delay. Int. J. Bifurc. Chaos 11, 1707–1722 (2001) · doi:10.1142/S021812740100295X
[8]Boutayeb, M., Darouach, M., Rafaralahy, H.: Generalized state-space observers for chaotic synchronization and secure communication. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49, 345–349 (2002) · doi:10.1109/81.989169
[9]Balasubramaniam, P., Chandran, R., Theesar, S.J.S.: Synchronization of chaotic nonlinear continuous neural networks with time-varying delay. Cogn. Neurodyn. 5, 361–371 (2011) · doi:10.1007/s11571-011-9162-0
[10]Theesar, S.J.S., Balasubramaniam, P., Chandran, R.: Delay-dependent exponential synchronization criteria for chaotic neural networks with time-varying delays. Braz. J. Phys. 42, 207–218 (2012) · doi:10.1007/s13538-012-0070-5
[11]Jiang, G., Zheng, W., Tang, W., Chen, G.: Integral-observer-based chaos synchronization. IEEE Trans. Circuits Syst. II, Express Briefs 53, 110–114 (2006) · doi:10.1109/TCSII.2005.857087
[12]Lu, J., Hill, D.: Impulsive synchronization of chaotic Lur’e systems by linear static measurement feedback: an LMI approach. IEEE Trans. Circuits Syst. II, Express Briefs 54, 710–714 (2007) · doi:10.1109/TCSII.2007.898468
[13]Lu, J., Hill, D.: Global asymptotical synchronization of chaotic Lur’e systems using sampled-data: a linear matrix inequality approach. IEEE Trans. Circuits Syst. II, Express Briefs 55, 586–590 (2008) · doi:10.1109/TCSII.2007.916788
[14]Zhang, C., He, Y., Wu, M.: Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circuits Syst. II, Express Briefs 56(4), 320–324 (2009) · doi:10.1109/TCSII.2009.2015388
[15]Banerjee, S., Rondoni, L., Mukhopadhyay, S.: Multi image encryption based on synchronization of chaotic lasers and iris authentication. Opt. Lasers Eng. 50, 950–957 (2012) · doi:10.1016/j.optlaseng.2012.02.009
[16]Xian, L., Qing, G., Liyong, N.: A revisit to synchronization of Lurie systems with time-delay feedback control. Nonlinear Dyn. 59, 297–307 (2010) · Zbl 1183.70074 · doi:10.1007/s11071-009-9539-3
[17]ShiYun, X., Ying, Y.: Global asymptotical stability and generalized synchronization of phase synchronous dynamical networks. Nonlinear Dyn. 59, 485–496 (2010) · Zbl 1183.70039 · doi:10.1007/s11071-009-9555-3
[18]Ji, D.H., Lee, D.W., Koo, J.H., Won, S.C., Lee, S.M.: Synchronization of neutral complex dynamical networks with coupling time-varying delays. Nonlinear Dyn. 65, 349–358 (2011) · doi:10.1007/s11071-010-9896-y
[19]Kwon, O.M., Park, J.H., Lee, S.M.: Secure communication based on chaotic synchronization via interval time-varying delay feedback control. Nonlinear Dyn. 63, 239–252 (2011) · Zbl 1215.93127 · doi:10.1007/s11071-010-9800-9
[20]Lee, S.M., Choi, S.J., Ji, D.H., Park, J.H., Won, S.C.: Synchronization for chaotic Lur’e systems with sector-restricted nonlinearities via delayed feedback control. Nonlinear Dyn. 59, 277–288 (2010) · Zbl 1183.70073 · doi:10.1007/s11071-009-9537-5
[21]He, Y., Wen, G., Wang, Q.: Delay-dependent synchronization criterion for Lur’e systems with delay feedback control. Int. J. Bifurc. Chaos 16, 3087–3091 (2006) · Zbl 1139.93349 · doi:10.1142/S0218127406016677
[22]Lu, J., Cao, J., Ho, D.: Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 55, 1347–1359 (2008) · doi:10.1109/TCSI.2008.916462
[23]Souza, F., Palhares, R., Mendes, E.: Robust Hontrol for master-slave synchronization of Lur’e systems with time-delay feedback control. Int. J. Bifurc. Chaos 18, 1161–1173 (2008) · Zbl 1147.93328 · doi:10.1142/S0218127408020896
[24]Liu, K., Suplin, V., Fridman, E.: Stability of linear systems with general sawtooth delay. IMA J. Math. Control Inf. 27, 419–436 (2010) · Zbl 1206.93080 · doi:10.1093/imamci/dnq023
[25]Liu, K., Fridman, E.: Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48, 102–108 (2012) · Zbl 1244.93094 · doi:10.1016/j.automatica.2011.09.029
[26]Ding, K., Han, Q.: Master-slave synchronization criteria for horizontal platform systems using time delay feedback control. J. Sound Vib. 330, 2419–2436 (2011) · doi:10.1016/j.jsv.2010.12.006
[27]Huang, C.-L.: Nonlinear dynamics of the horizontal platform. Master thesis, National Chiao Tung University (1996)