zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
K 2 and L-functions of elliptic curves. Computer calculations. (English) Zbl 0629.14002
Applications of algebraic K-theory to algebraic geometry and number theory, Proc. AMS-ISM-SIAM Joint Summer Res. Conf., Boulder/Colo. 1983, Part I, Contemp. Math. 55, 79-88 (1986).

[For the entire collection see Zbl 0588.00014.]

The paper concerns some computer calculations done by Grayson in the fall of 1981 to compare the value of the regulator on K 2 of an elliptic curve with the value of the L-function at s=2. All curves on the Swinnerton-Dyer table [see “Modular functions of one Variable. IV” Proc. Internat. Summer School 1972, Univ. Antwerp, RUCA, Lect. Notes Math. 476 (1975; Zbl 0315.14014)] with Weil conductor 180, negative discriminant, and a rational torsion point of order 5 were considered. These computations are explained by a modified form of a conjecture advanced by Bloch and Beilinson. They provide evidence for a lot of exotic relations between special values of Eisenstein-Kronecker- Lerch series and values of Hasse-Weil L-functions for elliptic curves without complex multiplication.

Reviewer: Ş.A.Basarab

MSC:
14-04Machine computation, programs (algebraic geometry)
14C35Applications of methods of algebraic K-theory
14G10Zeta-functions and related questions
14H45Special curves and curves of low genus
14H52Elliptic curves