×

Commutators in linear groups. (English) Zbl 0676.20024

Let G be a group, and c(G) denote the least natural number c such that every element of the commutator subgroup \(G'\) of G is a product of c commutators. The following conditions on G are considered in the article: (*) G contains pairwise commuting subgroups \(H_ 1,...,H_ k\), and for each finite subset S of G there are elements \(g_ i\) in G such that \(g_ i^{-1}Sg_ i\leq H_ i\) for \(i=1,...,k\); (**) G contains a subgroup \(G_ 0\) and pairwise commuting subgroups \(H_ 1,...,H_ k\), and for each finite subset S of G there are \(g_ i,g_{\sigma}\in G_ 0\), where \(i=1,...,k\) and \(\sigma \in S_ k\) (the symmetric group of degree k), such that \(g_ i^{-1}sg_ i\in H_ i\) and \(g_{\sigma}^{-1}g_ i^{-1}sg_ ig_{\sigma}=g_{\sigma i}^{- 1}sg_{\sigma i}\) for \(i=1,...,k\), \(\sigma \in S_ k\), and all \(s\in S\). (a) If a group G satisfies the condition (*) with \(k=2\), then c(G)\(\leq 3\). (b) If a group G satisfies (*) with \(k=3\), then every commutator in G is a commutator in \(G'\). So \(G'\) is perfect and \(c(G)=c(G')\). (c) Under the condition (**) with \(k=3\) and \(G_ 0=G\), c(G)\(\leq 2\). (Proposition 1). Under the condition (**) with \(k=5\), \(G'\) is perfect and \(c(G)=c(G')\leq 2\); moreover, every element of \(G'\) is the product of a commutator in G and a commutator in \(G_ 0\). (Theorem 2). Some applications are made to “infinite-dimensional” automorphism groups, including infinite-dimensional linear groups over an associative ring with unity.
Reviewer: Yu.I.Merzlyakov

MSC:

20G35 Linear algebraic groups over adèles and other rings and schemes
20F12 Commutator calculus
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bass, H.: K-Theory and stable algebra, Publ. Math. IHES 22 (1964), 5-60. · Zbl 0248.18025
[2] Bass, H: Unitary algebraic K-Theory, Springer Lecture Notes Math. 343 (1973), pp. 57-205.
[3] Dennis, R. K. and Vaserstein, L. N.: On a question of M. Newman on the number of commutators, J. Algebra, 118 (1988), 150-161. · Zbl 0649.20048
[4] Dokovic, D. Z.: On commutators in real semisimple Lie groups, Osaka J. Math. 23 (1986), 223-238.
[5] Guralnick, R. M.: Commutators and commutator subgroups, Adv. Math. 45 (1982), 319-330. · Zbl 0505.20022
[6] de la Harpe, P.: Sur le simplicité essentielle du groupe des inversibles et du groupe unitaire dans une C *-algèbre simple, Funct. Annal. 62:3 (1985), 354-378. · Zbl 0573.46033
[7] Isaacs, I. M.: Commutators and the commutator subgroup, Amer. Math. Monthly 84 (1977), 720-722. · Zbl 0378.20029
[8] Ito, N.: A theorem on the alternating group An(n?5), Math. Japon 2 (1951), 59-60.
[9] Milnor, J.: Introduction to Algebraic K-Theory, Princeton Univ. Press (1970). · Zbl 0199.55501
[10] Newman, M.: Unimodular commutators, Proc. Amer. Math. Soc. 101:4 (1987), 605-609. · Zbl 0633.15007
[11] Thompson, R. C.: Commutators in the special and general linear groups, Trans. Amer. Math. Soc. 101:1 (1961), 16-33. · Zbl 0109.26002
[12] Vaserstein, L. N.: Stabilization for unitary and orthogonal groups over a ring with involution, Mat. Sb. 81:3 (1970), 328-351 = Math. USSR-Sb. 10, 307-326.
[13] Vaserstein, L. N.: Reduction of a matrix depending on parameters to a diagonal form by addition operations, Proc. Amer. Math. Soc., 103:3 (1988), 741-746. · Zbl 0657.55005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.